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Chapter 1

Overview

This document is targeted for the ASIC designer who is integrating a version of a MIPS32™ M4K™ processor core into
the system ASIC. This document is applicable to both those integrators who are using a hard core and those who are
integrating a soft core.

In addition to this overview chapter, the document contains the following chapters:

• Chapter 2, “Signal Description,” on page 2 describes the pins of the core.

• Chapter 3, “SRAM-Style Interface,” on page 16 describes the SRAM interface protocol used by the core.

• Chapter 4, “EJTAG Interface,” on page 48 discusses the EJTAG interface used by the core, including the optional
EJTAG TAP controller and the PDtrace interface.

• Chapter 5, “Coprocessor Interface,” on page 56 describes the Coprocessor 2 interface and protocol used by the core.

• Chapter 6, “VMC Simulation Model,” on page 72 describes models that can be used in place of the M4K core. One
model is described in this chapter, a cycle-exact simulation model compiled with the Synopsys Verilog Model
Compiler tool (VMC). The VMC model provides a cycle-exact model of a M4K core that is used as a golden
reference model in the customer verification environment for soft core licensees. It is also used by hard core
integrators and others who do not receive the RTL to simulate with the M4K core.

• Chapter 7, “Clocking, Reset and Power,” on page 80 covers issues related to handling the clock insertion delay of the
M4K core. Additionally, the hardware reset requirements of the core, as well as power management techniques, are
discussed.

• Chapter 8, “Design For Test Features,” on page 84 discusses general DFT features which may be preset on the M4K
core. Details are specific to a particular implementation of the core.

1.1 Environment Variable Setup

Some UNIX paths described in the document refer to theMIPS_PROJECTenvironment variable, which should point to
the top level of the M4K core deliverables. To set this variable:

% cd <release directory>
% setenv MIPS_PROJECT ‘pwd‘ # Note that these are back-ticks, not single quotes
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Chapter 2

Signal Description

This chapter describes the signals on a MIPS32™ M4K™ processor core. Only naming conventions and actua
names are listed in this chapter. The specific interface protocols to which each signal adheres are described in su
chapters.

This chapter contains the following sections:

• Section 2.1, "Naming Conventions"

• Section 2.2, "Detailed Signal Descriptions"

2.1 Naming Conventions

The signal direction key for the signal descriptions is shown inTable 2-1 below.

The names of interface signals present on a M4K core are prefixed with a unique string, according to their prim
function.Table 2-2 defines the prefixes used for M4K core interface signals.

Generally, most signals have active-high assertion levels if not otherwise specified in the tables. Signals ending
suffix “_N” are active low.

Table 2-1 Signal Type Key

Type Description

In Input to the core, unless otherwise noted, sampled on the rising edge of the appropriate clock
signal.

Out Output of the core, unless otherwise noted, driven at the rising edge of the appropriate clock
signal.

AIn Asynchronous inputs that are synchronized by the core.

SIn Static input to the core. These signals control configuration options and are normally tied to
either power or ground. They must not change state whileSI_ColdReset is deasserted.

SOut Static output from the core. These signals control configuration options in an optional connected
Coprocessor 2. These signals are static and do not ever change state.

Table 2-2 Signal Prefix Key

Prefix Description

{I,D}S_ Signals related to the SRAM-style interface.

SI_ General system interface signals, which are not part of the SRAM interface.

EJ_ Signals related to the EJTAG interface.

TC_ Signals related to the EJTAG Trace interface.

CP2_ Signals related to the Coprocessor 2 interface.

gscan/Bist Signals related to design-for-test features, either scan or memory Built-In-Self-Test (BIST).
MIPS32™ M4K™ Processor Core Integrator’s Guide, Revision 01.03 2
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2.2 Detailed Signal Descriptions

All core signals are listed inTable 2-3 below. Note that the signals are grouped by logical function, not by expecte
physical location. All signals, with the exception ofEJ_TRST_N, are active-high signals.EJ_DINT andSI_NMI go
through edge-detection logic so that only one exception is taken each time they are asserted.

Table 2-3 Signal Descriptions

Signal Name Type Description

System Interface: Refer to Chapter 7, “Clocking, Reset and Power,” on page 80 for more details

Clock Signals: Refer to Section 7.1, "Clocking" on page 80 for more details

SI_ClkIn In Clock input. All inputs and outputs, except a few of the EJTAG signals, are
sampled or asserted relative to the rising edge of this signal.

SI_ClkOut Out Reference clock. This clock signal provides a reference for de-skewing any
clock insertion delay created by the internal clock buffering in the core.

Reset Signals: Refer to Section 7.2, "Reset and Hardware Initialization" on page 81 for a description of the various types of
reset.

SI_ColdReset AIn Hard/Cold reset signal. Causes a Reset Exception in the core.

SI_NMI AIn
Non-maskable Interrupt. An edge detect is used on this signal. When this
signal is sampled asserted (high) one clock after being sampled deasserted, an
NMI is posted to the core.

SI_Reset AIn Soft/Warm reset signal. Causes a SoftReset Exception in the core.

Power Management Signals: See Section 7.3, "Power Management" on page 82 for more details

SI_ERL Out
This signal reflects the state of the ERL bit (2) in the CP0Status register and
indicates the error level. The core assertsSI_ERL whenever a Reset, Soft
Reset, or NMI exception is taken.

SI_EXL Out
This signal reflects the state of the EXL bit (1) in the CP0Status register and
indicates the exception level. The core assertsSI_EXLwhenever any exception
other than a Reset, Soft Reset, NMI, or Debug exception is taken.

SI_RP Out
This signal reflects the state of the RP bit (27) in the CP0Status register.
Software can write this bit to indicate that the device can enter a reduced power
mode.

SI_Sleep Out
This signal is asserted by the core whenever the WAIT instruction is executed.
The assertion of this signal indicates that the clock has stopped and that the
core is waiting for an interrupt.

Interrupt Signals:

SI_EICPresent SIn Indicates whether an external interrupt controller is present. Value is visible to
software in theConfig3VEIC register field.

SI_EISS[3:0] In General purpose register shadow set number to be used when servicing an
interrupt in EIC interrupt mode.

SI_IAck Out

Interrupt acknowledge indication for use in external interrupt controller mode.
This signal is active for a singleSI_ClkIn cycle when an interrupt is taken.
When the processor initiates the interrupt exception, it loads the value of the
SI_Int[5:0] pins into theCauseRIPL field (overlaid withCauseIP7..IP2), and
signals the external interrupt controller to notify it that the current interrupt
request is being serviced. This allows the controller to advance to another
pending higher-priority interrupt, if desired.
MIPS32™ M4K™ Processor Core Integrator’s Guide, Revision 01.03 3
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Chapter 2 Signal Description
SI_Int[5:0] In/AIn

Active high Interrupt pins. These signals are driven by external logic and when
asserted indicate an interrupt exception to the core. The interpretation of these
signals depends on the interrupt mode in which the core is operating; the
interrupt mode is selected by software.

TheSI_Int signals go through synchronization logic and can be asserted
asynchronously toSI_ClkIn.In External Interrupt Controller (EIC) mode,
however, the interrupt pins are interpreted as an encoded value, so they must
be asserted synchronously toSI_ClkInto guarantee that all bits are received by
the core in a particular cycle.

The interrupt pins are level sensitive and should remain asserted until the
interrupt has been serviced.

In Release 1 Interrupt Compatibility mode:

• All 6 interrupt pins have the same priority as far as the hardware is
concerned.

• Interrupts are non-vectored.

In Vectored Interrupt (VI) mode:

• TheSI_Int pins are interpreted as individual hardware interrupt requests.

• Internally, the core prioritizes the hardware interrupts and chooses an
interrupt vector.

In External Interrupt Controller (EIC) mode:

• An external block prioritizes its various interrupt requests and produces a
vector number of the highest priority interrupt to be serviced.

• The vector number is driven on theSI_Int pins, and is treated as a 6-bit
encoded value in the range of 0..63.

• When the core starts the interrupt exception, signaled by the assertion of
SI_IAck, it loads the value of theSI_Int[5:0] pins into theCauseRIPL field
(overlaid withCauseIP7..IP2). The interrupt controller can then signal
another interrupt.

SI_IPL[5:0] Out
Current interrupt priority level from theStatusIPL register field, provided for
use by an external interrupt controller. This value is updated wheneverSI_IAck
is asserted.

SI_IPTI[2:0] SIn
Indicates theSI_Int hardware interrupt pin that the timer interrupt pin
(SI_TimerInt) is combined with external to the core. The value of this bus is
visible to software in theIntCtlIPTI register field.

SI_SWInt[1:0] Out
Software interrupt request. These signals represent the value in theIP[1:0]
field of theCause register. They are provided for use by an external interrupt
controller.

Table 2-3 Signal Descriptions (Continued)

Signal Name Type Description
4 MIPS32™ M4K™ Processor Core Integrator’s Guide, Revision 01.03
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2.2 Detailed Signal Descriptions
SI_TimerInt Out

Timer interrupt indication. This signal is asserted whenever theCount and
Compare registers match and is deasserted when theCompare register is
written. This hardware pin represents the value of theCauseTI register field.

For Release 1 Interrupt Compatibility mode or Vectored Interrupt mode:

In order to generate a timer interrupt, theSI_TimerInt signal needs to be
brought back into the M4K core on one of the sixSI_Int interrupt pins in a
system-dependent manner. Traditionally, this has been accomplished by
muxingSI_TimerIntwith SI_Int[5]. ExposingSI_TimerIntas an output allows
more flexibility for the system designer. Timer interrupts can be muxed or
ORed into one of the interrupts, as desired in a particular system. TheSI_Int
hardware interrupt pin with which theSI_TimerInt signal is merged is
indicated via theSI_IPTI static input pins.

For External Interrupt Controller (EIC) mode:

TheSI_TimerInt signal is provided to the external interrupt controller, which
then prioritizes the timer interrupt with all other interrupt sources, as desired.
The controller then encodes the desired interrupt value on theSI_Int pins.
SinceSI_Int is usually encoded, theSI_IPTI pins are not meaningful in EIC
mode.

Configuration Inputs:

SI_CPUNum[9:0] SIn

Unique identifier to specify an individual core in a multi-processor system.
The hardware value specified on these pins is available in theEBaseCPUNum
register field, so it can be used by software to distinguish a particular processor.
In a single processor system, this value should be set to zero.

SI_Endian SIn

Indicates the base endianness of the core. Value is visible to software in the
Config0BE register field.

SI_SimpleBE[1:0] SIn

The state of these signals can constrain the core to only generate certain byte
enables on SRAM interface writes. This eases connection to some existing bus
standards. Value ofSI_SimpleBE[0] is visible in theConfig0SB register field.
See Section 3-25, "Locking (single cycle)" on page 47 for more details.

SRAM-style Interface: Refer to Chapter 3, “SRAM-Style Interface,” on page 16 for more details.

The SRAM-style interface allows simple connection to fast, tightly-coupled memory devices.It can be configured with
independent interfaces for Instruction and Data, or a Unified interface. Signals related to the I-side interface are prefixed with
“IS_”; signals related to the D-side interface are prefixed with “DS_”. When the Unified interface is used, then most D-side
signals are obsoleted, since they have an I-side equivalent; only the write data bus,DS_WData, continues to be used from the
D-side.

DS_Read Out Read strobe.

DS_Write Out Write strobe.

DS_Sync Out Sync strobe.

Table 2-3 Signal Descriptions (Continued)

Signal Name Type Description

SI_Endian Base Endian Mode

0 Little Endian

1 Big Endian

SI_SimpleBE[1:0] Byte Enable Mode

002 All BEs allowed

012
Naturally aligned bytes, halfwords,

and words only

102 Reserved

112 Reserved
MIPS32™ M4K™ Processor Core Integrator’s Guide, Revision 01.03 5
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Chapter 2 Signal Description
DS_WbCtl Out

Write buffer control.

This signal is asserted when the M4K core can guarantee that no D-side read
transaction will be started in the current clock cycle. For the purpose of
generating this signal, if there is a pending transaction, the M4K core assumes
that it will end in this cycle, in order to determine whether a new read
transaction might be started or not.
Unlike DS_Read, there is no asynchronous path fromDS_Stall or any other
input signal toDS_WbCtl. Also, it is an earlier signal thanDS_Read.

It is intended to be used by an external agent to control flushing of a write
buffer (if a write buffer is present).

DS_Addr[31:2] Out Address of transaction. WhenDS_Syncis asserted high,DS_Addr[10:6]holds
the “sync type” (the “stype” field of the SYNC instruction).

DS_BE[3:0] Out

Byte enable signals for transaction.

DS_BE[3] enables byte lane corresponding to bits31:24.
DS_BE[2] enables byte lane corresponding to bits 23:16.
DS_BE[1] enables byte lane corresponding to bits15:8.
DS_BE[0] enables byte lane corresponding to bits 7:0.

DS_WData[31:0] Out Write data as defined byDS_BE[3:0]/IS_BE[3:0]. Used for both D-side and
I-side transactions.

DS_Abort Out

Request for transaction (read, write or sync) to be aborted, if possible. It is
optional whether the external logic uses this signal or not, although using it
may reduce interrupt latency. Completion of any transaction (aborted or not)
is always communicated throughDS_Stall. Whether the transaction was in fact
aborted is signalled usingDS_AbortAck.
DS_Abort is asserted through (and including) the cycle whereDS_Stall is
deasserted.

DS_EjtBreakEn Out One or more EJTAG data breakpoints are enabled.

DS_EjtBreak Out

Asserted when an EJTAG data break is detected. May be used by external logic
to cancel the current transaction. This signal is asserted one cycle after the
transaction start, so when precise breaks are required, the external logic must
stall transactions by one cycle ifDS_EjtBreakEn indicates that a break may
occur.
DS_EjtBreak is asserted through (and including) the cycle whereDS_Stall is
deasserted.

DS_Lock Out Asserted when a read transaction is due to an LL (load linked) instruction.

DS_Unlock Out Asserted when a write transaction is due to an SC (store conditional)
instruction.

DS_Stall In Indicates that the transaction is not ready to be completed.

DS_Error In
Valid in the cycle terminating the transaction (DS_Stalldeasserted). Asserted
high if transaction caused an error. Causes bus error exception to be taken by
the core.

DS_AbortAck In

Valid in the cycle terminating the transaction (DS_Stalldeasserted). Asserted
high if transaction was aborted.
If no abort was requested (DS_Abort is low), andDS_AbortAck is asserted
high in the cycle terminating the transaction, a bus error exception is taken.

DS_Redir In Valid in the cycle terminating the transaction (DS_Stalldeasserted). Asserted
high if transaction must be redirected to In-side.

DS_UnlockAck In
Valid in the cycle terminating the transaction (DS_Stalldeasserted). Result of
DS_Unlock operation. Should be asserted high if system holds a lock on the
address used for the write transaction (SC).

Table 2-3 Signal Descriptions (Continued)

Signal Name Type Description
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2.2 Detailed Signal Descriptions
DS_RData[31:0] In Read data.

DS_RBE[3:0] In

Byte enable signals forDS_RData[31:0].

DS_RBE[3] enables byte lane corresponding toDS_RData[31:24].
DS_RBE[2] enables byte lane corresponding toDS_RData[23:16].
DS_RBE[1] enables byte lane corresponding toDS_RData[15:8].
DS_RBE[0] enables byte lane corresponding toDS_RData[7:0].

IS_Read Out Read strobe.

IS_Write Out Write strobe. Only asserted due to a redirected data write.

IS_Sync Out Sync strobe.

IS_WbCtl Out

Write buffer control.

This signal is asserted when the M4K core can guarantee that no I-side read
transaction will be started in the current clock cycle. For the purpose of
generating this signal, if there is a pending transaction, the M4K core assumes
that it will end in this cycle, in order to determine whether a new read
transaction might be started or not.
Unlike IS_Read, there is no asynchronous path fromIS_Stallor any other input
signal toIS_WbCtl. Also, it is an earlier signal thanIS_Read.

It is intended to be used by an external agent to control flushing of a write
buffer (if a write buffer is present).

IS_Instr Out Indicates instruction fetch when high, or redirected data read/write when low.

IS_Addr[31:2] Out Address of transaction. WhenIS_Sync is asserted high,IS_Addr[10:6] holds
the “sync type” (the “stype” field of SYNC instruction).

IS_BE[3:0] Out

Byte enable signals for transaction.

IS_BE[3] enables byte lane corresponding to bits31:24.
IS_BE[2] enables byte lane corresponding to bits 23:16.
IS_BE[1] enables byte lane corresponding to bits15:8.
IS_BE[0] enables byte lane corresponding to bits 7:0.

IS_Abort Out

Request for transaction to be aborted, if possible. It is optional whether the
external logic uses this signal or not, although using it may reduce interrupt
latency. Completion of any transaction (aborted or not) is always
communicated throughIS_Stall. Whether the transaction was in fact aborted is
signalled usingIS_AbortAck.
IS_Abort is asserted through (and including) the cycle whereIS_Stall is
deasserted.

IS_EjtBreakEn Out
One or more EJTAG instruction breakpoints are enabled. This signal is also
asserted for the Unified Interface when one or more data breakpoints are
enabled.

IS_EjtBreak Out

Asserted when an instruction break is detected. Also asserted for the Unified
Interface when a data break is detected. May be used by external logic to
cancel the current transaction.
External logic may determine whether this is an instruction break or a data
break based onIS_Instr.
This signal is asserted one cycle after the transaction start, so when precise
breaks are required, the external logic must stall transactions by one cycle if
IS_EjtBreakEn indicates that a break may occur.
IS_EjtBreak is asserted through (and including) the cycle whereIS_Stall is
deasserted.

IS_Lock Out Asserted when a read transaction is due to a redirected LL (load linked)
instruction,

Table 2-3 Signal Descriptions (Continued)

Signal Name Type Description
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Chapter 2 Signal Description
IS_Unlock Out Asserted when a write transaction is due to a redirected SC (store conditional)
instruction.

IS_UnlockAll Out Asserted for one clock cycle when an ERET instruction is executed.

IS_Stall In Indicates that the transaction is not ready to be completed.

IS_Error In
Valid in the cycle terminating the transaction (IS_Stall deasserted). Asserted
high if transaction caused an error. Causes bus error exception to be taken by
the core.

IS_AbortAck In

Valid in the cycle terminating the transaction (IS_Stall deasserted). Asserted
high if transaction was aborted.
If no abort was requested (IS_Abortis low), andIS_AbortAckis asserted high
in the cycle terminating the transaction, a bus error exception is taken.

IS_UnlockAck In
Valid in the cycle terminating the transaction (IS_Stall deasserted). Result of
IS_Unlock operation. Should be asserted high if system holds a lock on the
address used for the redirected write transaction (SC).

IS_RData[31:0] In Read data.

IS_RBE[3:0] In

Byte enable signals forIS_RData[31:0].

IS_RBE[3] enables byte lane corresponding toIS_RData[31:24].
IS_RBE[2] enables byte lane corresponding toIS_RData[23:16].
IS_RBE[1] enables byte lane corresponding toIS_RData[15:8].
IS_RBE[0] enables byte lane corresponding toIS_RData[7:0].

EJTAG Interface:  Refer to Chapter 4, “EJTAG Interface,” on page 48 for more details.

TAP Interface. These signals comprise the EJTAG Test Access Port. These signals will not be connected if the core does not
implement the TAP controller.

EJ_TRST_N In Active low Test Reset Input (TRST*) for the EJTAG TAP.EJ_TRST_Nmust be
asserted at power-up to cause the TAP controller to be reset.

EJ_TCK In Test Clock Input (TCK) for the EJTAG TAP.

EJ_TMS In Test Mode Select Input (TMS) for the EJTAG TAP.

EJ_TDI In Test Data Input (TDI) for the EJTAG TAP.

EJ_TDO Out Test Data Output (TDO) for the EJTAG TAP.

EJ_TDOzstate Out

Drive indication for the output ofTDO for the EJTAG TAP at chip level:
1: TheTDO output at chip level must be in Z-state
0: TheTDO output at chip level must be driven to the value ofEJ_TDO.

IEEE Standard 1149.1-1990 definesTDOas a 3-stated signal. To avoid having
a 3-state core output, the M4K core outputs this signal to drive an external
3-state buffer.

Debug Interrupt:

EJ_DINTsup SIn

Value of DINTsup for the Implementation register. A 1 on this signal indicates
that the EJTAG probe can useDINT signal to interrupt the processor. This
signal should be asserted if theDINT pin on the EJTAG probe header is
connected to theEJ_DINT input of the core.

EJ_DINT In
Debug exception request when this signal is asserted in a CPU clock period
after being deasserted in the previous CPU clock period. The request is cleared
when debug mode is entered. Requests when in debug mode are ignored.

Debug Mode Indication

Table 2-3 Signal Descriptions (Continued)

Signal Name Type Description
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s,
EJ_DebugM Out

Asserted when the core is in Debug Mode. This can be used to bring the core
out of a low power mode (see Section 7.3, "Power Management" on page 82
for more details). In systems with multiple processor cores, this signal can be
used to synchronize the cores when debugging.

Device ID Bits: These inputs provide an identifying number visible to the EJTAG probe. If the EJTAG TAP controller is not
implemented, then these inputs are not connected. These inputs are always available for soft core customers. On hard core
the core “hardener” may set these inputs to their own values.

EJ_ManufID[10:0] SIn

Value of theDevice IDManufID register field. As per IEEE 1149.1-1990 section
11.2, the manufacturer identity code shall be a compressed form of JEDEC
standard manufacturer’s identification code in the JEDEC Publications106,
which can be found at: http://www.jedec.org/

ManufID[6:0] bits are derived from the last byte of the JEDEC code by
discarding the parity bit. ManufID[10:7] bits provide a binary count of the
number of bytes in the JEDEC code that contain the continuation character
(0x7F). Where the number of continuations characters exceeds 15, these 4 bits
contain the modulo-16 count of the number of continuation characters.

EJ_PartNumber[15:0] SIn Value of theDevice IDPartNumber register field.

EJ_Version[3:0] SIn Value of theDevice IDVersion register field.

System Implementation Dependent Outputs: These signals come from EJTAG control registers. They have no effect on the
core, but can be used to give EJTAG debugging software additional control over the system.

EJ_SRstE Out
Soft Reset Enable. EJTAG can deassert this signal if it wants to mask soft
resets. If this signal is deasserted, none, some, or all soft reset sources are
masked.

EJ_PerRst Out Peripheral Reset. EJTAG can assert this signal to request the reset of some or
all of the peripheral devices in the system.

EJ_PrRst Out Processor Reset. EJTAG can assert this signal to request that the core be reset.
This can be fed into theSI_Reset signal

TCtrace Interface: These signals are the connected to the Trace Capture Block (TCB) inside the core. Except for the
TC_ChipTrigInand theTC_ChipTrigOut, all of the following pins will normally be connected to an on-chip Probe Interface
Block (PIB). The PIB is placed close to the physical probe pins, and will handle the final off-chip transmission on the trace
port.

TC_PibPresent SIn Must be asserted when a PIB is attached to the TC Interface. When de-asserted
(low) all the other inputs are disregarded.

TC_TrEnable Out Trace Enable, when asserted the PIB must start the TR_Clk output running and
can expect valid data on all other outputs.

TC_ClockRatio[2:0] Out

Clock ratio. This is the software-set clock-ratio from theTCBCONTROLBCR
register field. The value will be within the boundaries defined byTC_CRMax
andTC_CRMin. The table below shows the encoded values for clock ratio.

Table 2-3 Signal Descriptions (Continued)

Signal Name Type Description

TC_ClockRatio Clock Ratio

000 8:1 (Trace clock is eight times the core clock)

001 4:1 (Trace clock is four times the core clock)

010 2:1 (Trace clock is double the core clock)

011 1:1 (Trace clock is same as the core clock)

100 1:2 (Trace clock is one half the core clock)

101 1:4 (Trace clock is one fourth the core clock)

110 1:6 (Trace clock is one sixth the core clock)

111 1:8 (Trace clock is one eighth the core clock)
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Chapter 2 Signal Description
TC_CRMax[2:0] SIn
Maximum Clock ratio supported. This static input sets theTCBCONFIGCRMax
register field. It defines the capabilities of the PIB module. This field
determines the maximum value ofTC_ClockRatio.

TC_CRMin[2:0] SIn
Minimum Clock ratio supported. This input sets theTCBCONFIGCRMin
register field. It defines the capabilities of the PIB module. This field
determines the minimum value ofTC_ClockRatio.

TC_ProbeWidth[1:0] SIn

This static input will set theTCBCONFIGPW register field. It specifies the
number of actual data trace pins on the probe (4, 8 or 16).

If this interface is not driving a PIB module, but some chip-level TCB-like
module, then this field should be set to 2’b11 (reserved value forPW).

TC_DataBits[2:0] In

This input identifies the number of bits picked up by the probe interface
module (PIB) in each “cycle”.

If TC_ClockRatio indicates a clock-ratio higher than 1:2, then clock
multiplication in the Probe logic is used. The “cycle” is equal to each core
clock cycle onSI_ClkIn.

If TC_ClockRatio indicates a clock-ratio lower than or equal to 1:2, then
“cycle” is (clock-ratio * 2) of the core clock cycle. For example, with a clock
ratio of 1:2, a “cycle” is equal to core clock cycle; with a clock ratio of 1:4, a
“cycle” is equal to one half of core clock cycle.

This input controls the down-shifting amount and frequency of the trace word
onTC_Data[63:0]. The bit width and the correspondingTC_DataBitsvalue is
shown in the table below.

This input might change as the value onTC_ClockRatio[2:0] changes.

TC_Valid Out Asserted when a new trace word is started on theTC_Data[63:0] signals.
TC_Valid is only asserted whenTC_DataBits is 100.

TC_Stall In

When asserted, an newTC_Validin the following cycle is stalled.TC_Validis
still asserted, but theTC_Datavalue andTC_Validis kept static, until the cycle
afterTC_Stall is sampled low.

TC_Stallis only sampled in the cycle before a newTC_Validcycle. And only
whenTC_DataBits is 100, indicating full word ofTC_Data.

Table 2-3 Signal Descriptions (Continued)

Signal Name Type Description

TC_ProbeWidth Number physical data
pin on PIB

00 4 bits

01 8 bits

10 16 bits

11 Not directly to PIB

TC_DataBits[2:0] Probe uses following bits
from TC_Data each cycle

000 TC_Data[3:0]

001 TC_Data[7:0]

010 TC_Data[15:0]

011 TC_Data[31:0]

100 TC_Data[63:0]

Others Unused
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2.2 Detailed Signal Descriptions
TC_Calibrate Out

This signal is asserted when the Cal bit inTCBCONTROLB is set.

For a simple PIB which only serves one TCB, this pin can be ignored. For a
multi-core capable PIB which also usesTC_ValidandTC_Stall, the PIB must
start producing the calibration pattern when this signal is asserted.

TC_Data[63:0] Out

Trace word data. The value on this 64-bit interface is shifted down as indicated
in TC_DataBits[2:0]. First cycle where a new TW is valid on all the bits and
TC_DataBits[2:0] is 100,TC_Valid is also asserted.

The Probe Interface Block (PIB) will only be connected to [(N-1):0] bits of this
output bus. N is the number of bits picked up by the PIB in each core clock
cycle. For clock ratios 1:2 and lower, N is equal to the number of physical trace
pins (legal values of N are 4, 8, or 16). For higher clock ratios, N is larger than
the number of physical trace pins.

TC_ProbeTrigIn In Rising edge trigger input. The source should be the Probe Trigger input. The
input is considered asynchronous, i.e., double registered in the core.

TC_ProbeTrigOut Out
Single cycle (relative to the “cycle” defined the description ofTC_DataBits)
high strobe, trigger output. The target of this trigger is intended to be the
external probe’s trigger output.

TC_ChipTrigIn In Rising edge trigger input. The source should be on-chip. The input is
considered asynchronous, i.e., double registered in the core.

TC_ChipTrigOut Out Single cycle (relative to core clock) high strobe, trigger output. The target of
this trigger is intended to be an on-chip unit.

Coprocessor 2 Interface: Refer to Chapter 5, “Coprocessor Interface,” on page 56 for more details.

Instruction Dispatch: These signals are used to transfer an instruction for the M4K core to the COP2 coprocessor.

CP2_ir_0[31:0] Out Coprocessor Arithmetic and To/From Instruction Word. Valid in the
cycle beforeCP2_as_0, CP2_ts_0 or CP2_fs_0 is asserted.

CP2_irenable_0 Out

Enable Instruction Registering.When deasserted, no instruction strobes
will be asserted in the following cycle. When asserted, theremay be an
instruction strobe asserted in the following cycle. Instruction strobes include
CP2_as_0, CP2_ts_0, CP2_fs_0.

Note: This is the only late signal in the interface. The intended function is to
use this signal as a clock gater on the capture latches in the coprocessor for
CP2_ir_0[31:0].

CP2_as_0 Out

Coprocessor 2 Arithmetic Instruction Strobe.Asserted in the cycle after an
arithmetic Coprocessor 2 instruction is available onCP2_ir_0[31:0]. If
CP2_abusy_0 was asserted in the previous cycle, this signal may not be
asserted. This signal must never be asserted in the same cycle thatCP2_ts_0
or CP2_fs_0 is asserted.

CP2_abusy_0 In
Coprocessor 2 Arithmetic Busy.When asserted, a Coprocessor2 arithmetic
instruction may not be dispatched.CP2_as_0can not be asserted in the cycle
after this signal is asserted.

CP2_ts_0 Out

Coprocessor 2 To Strobe.Asserted in the cycle after a To COP2 Op
instruction is available onCP2_ir_0[31:0]. If CP2_tbusy was asserted in the
previous cycle, this signal will not be asserted. This signal can never be
asserted in the same cycle thatCP2_as_0 or CP2_fs_0 is asserted.

CP2_tbusy_0 In
To Coprocessor 2 Busy.When asserted, a To COP2 Op must not be
dispatched.CP2_ts_0 may not be asserted in the cycle after this signal is
asserted.

Table 2-3 Signal Descriptions (Continued)

Signal Name Type Description
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f

CP2_fs_0 Out

Coprocessor 2 From Strobe.Asserted in the cycle after a From COP2 Op
instruction is available onCP2_ir_0[31:0]. If CP2_fbusy_0 was asserted in
the previous cycle, this signal must not be asserted. This signal may never be
asserted in the same cycle thatCP2_as_0 or CP2_ts_0 is asserted.

CP2_fbusy_0 In
From Coprocessor 2 Busy.When asserted, a From COP2 Op may not be
dispatched.CP2_fs_0 may not be asserted in the cycle after this signal is
asserted.

CP2_endian_0 Out

Big Endian Byte Ordering. When asserted, the processor is using big endian
byte ordering for the dispatched instruction. When deasserted, the processor is
using little-endian byte ordering. Valid the cycle beforeCP2_as_0, CP2_fs_0
or CP2_ts_0 is asserted.

CP2_inst32_0 SOut

MIPS32 Compatibility Mode - Instructions. When asserted, the dispatched
instruction is restricted to the MIPS32 subset of instructions. Please refer to the
MIPS64™ architecture specification for a complete description of MIPS32
compatibility mode. Valid the cycle beforeCP2_as_0, CP2_fs_0or CP2_ts_0
is asserted.

Note: The M4K core is a MIPS32 core, and will only issue MIPS32
instructions. ThusCP2_inst32_0 is tied high.

CP2_kd_mode_0 Out Kernel/Debug Mode.When asserted, the processor is in kernel or debug
mode. Valid the cycle beforeCP2_as_0, CP2_fs_0 or CP2_ts_0 is asserted.

To Coprocessor Data: These signals are used when data is sent from the M4K core to the COP2 coprocessor, as part of
completing a To Coprocessor instruction.

CP2_tds_0 Out Coprocessor To Data Strobe.Asserted when To COP Op data is available on
CP2_tdata_0[31:0].

CP2_torder_0[2:0] SOut

Coprocessor To Order.Specifies which outstanding To COP Op the data is
for. Valid only whenCP2_tds_0 is asserted.

Note: The M4K core can never send Data Out-of-Order, thus
CP2_torder_0[2:0] is forced to 0002.

CP2_tordlim_0[2:0] SIn

To Coprocessor Data Out-of-Order Limit. This signal forces the integer
processor core to limit how much it can reorder To COP Data. The value on
this signal corresponds to the maximum allowed value to be used on
CP2_torder_0[2:0].

Note: The M4K core will never send Data Out-of-Order, thus
CP2_tordlim_0[2:0] is ignored.

CP2_tdata_0[31:0] Out To Coprocessor Data.Data to be transferred to the coprocessor. Valid when
CP2_tds_0 is asserted.

From Coprocessor Data: These signals are used when data is sent to the M4K core from the COP2 coprocessor, as part o
completing a From Coprocessor instruction.

Table 2-3 Signal Descriptions (Continued)

Signal Name Type Description

CP2_torder_0[2:0] Order

0002 Oldest outstanding To COP Op data transfer

0012 2nd oldest To COP Op data transfer.

0102 3rd oldest To COP Op data transfer.

0112 4th oldest To COP Op data transfer.

1002 5th oldest To COP Op data transfer.

1012 6th oldest To COP Op data transfer.

1102 7th oldest To COP Op data transfer.

1112 8th oldest To COP Op data transfer.
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CP2_fds_0 In Coprocessor From Data Strobe.Asserted when From COP Op data is
available onCP2_fdata_0[31:0].

CP2_forder_0[2:0] In

Coprocessor From Order.Specifies which outstanding From COP Op the
data is for. Valid only whenCP2_fds_0 is asserted.

Note: Only values 0002 and 0012 are allowed; see theCP2_fordlim_0[2:0]
description below.

CP2_fordlim_0[2:0] SOut

From Coprocessor Data Out-of-Order Limit. This signal sets the limit on
how much the coprocessor can reorder From COP Data. The value on this
signal corresponds to the maximum allowed value to be used on
CP2_forder_0[2:0].

Note: The M4K core can handle one Out-of-Order From Data transfer.
CP2_fordlim_0[2:0]is forced to 0012. The core can also never have more than
two outstanding From COP instructions issued, which also automatically
limits CP2_forder_0[2:0] to 0012.

CP2_fdata_0[31:0] In From Coprocessor Data.Data to be transferred from the coprocessor. Valid
whenCP2_fds_0 is asserted.

Coprocessor Condition Code Check: These signals are used to report the result of a condition code check to the M4K core
from the COP2. This is only used for BC2 instructions.

CP2_cccs_0 In Coprocessor Condition Code Check Strobe.Asserted when coprocessor
condition code check bits are available onCP2_ccc_0.

CP2_ccc_0 In
Coprocessor Conditions Code Check.Valid whenCP2_cccs_0 is asserted.
When asserted, the branch instruction checking the condition code should take
the branch. When deasserted, the branch instruction should not branch.

Coprocessor Exceptions: These signals are used by the COP2 to report exception for each instruction.

CP2_excs_0 In Coprocessor Exception Strobe.Asserted when coprocessor exception
signalling is available onCP2_exc_0 andCP2_exccode_0.

CP2_exc_0 In Coprocessor Exception.When asserted, a Coprocessor exception is signaled
onCP2_exccode_0[4:0]. Valid whenCP2_excs_0 is asserted.

Table 2-3 Signal Descriptions (Continued)

Signal Name Type Description

CP2_forder_0[2:0] Order

0002 Oldest outstanding From COP Op data transfer

0012 2nd oldest From COP Op data transfer.

0102 3rd oldest From COP Op data transfer.

0112 4th oldest From COP Op data transfer.

1002 5th oldest From COP Op data transfer.

1012 6th oldest From COP Op data transfer.

1102 7th oldest From COP Op data transfer.

1112 8th oldest From COP Op data transfer.
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Chapter 2 Signal Description
CP2_exccode_0[4:0] In

Coprocessor Exception Code.Valid when bothCP2_excs_0andCP2_exc_0
are asserted.

Instruction Nullification: These signals are used by the M4K core to signal nullification of each instruction to the COP2
coprocessor.

CP2_nulls_0 Out Coprocessor Null Strobe.Asserted when a nullification signal is available on
CP2_null_0.

CP2_null_0 Out

Nullify Coprocessor Instruction. When deasserted, the M4K core is
signalling that the instruction is not nullified. When asserted, the M4K core is
signalling that the instruction is nullified, and no further transactions will take
place for this instruction. Valid whenCP2_nulls_0 is asserted.

Instruction Killing: These signals are used by the M4K core to signal killing of each instruction to the COP2 coprocessor.

CP2_kills_0 Out Coprocessor Kill Strobe.Asserted when kill signalling is available on
CP2_kill_0[1:0].

CP2_kill_0[1:0] Out

Kill Coprocessor Instruction. Valid whenCP2_kills_0 is asserted.

If an instruction is killed, no further transactions will take place on the
interface for this instruction.

Miscellaneous COP2 signals:

CP2_reset Out Coprocessor Reset.Asserted when a hard or soft reset is performed by the
integer unit.

CP2_present SIn COP2 Present.Must be asserted when COP2 hardware is connected to the
Coprocessor 2 Interface.

CP2_idle In
Coprocessor Idle.Asserted when the coprocessor logic is idle. Enables the
processor to go into sleep mode and shut down the clock. Valid only if
CP2_present is asserted.

Scan Test Interface: These signals provide the interface for testing the core. The use and configuration of these pins are
implementation-dependent.

gscanenable In
This signal should be asserted while scanning vectors into or out of the core.
Thegscanenable signal must be deasserted during normal operation and
during capture clocks in test mode.

Table 2-3 Signal Descriptions (Continued)

Signal Name Type Description

CP2_exccode[4:0] Exception

010102 (RI) Reserved Instruction Exception

100002
(IS1) Available for Coprocessor

specific Exception

100012
(IS1) Available for Coprocessor

specific Exception

100102 C2E Exception

All others Reserved

CP2_kill_0[1:0] Type of Kill

002 Instruction is not killed and
results can be committed.012

102
Instruction is killed.

(not due toCP2_exc_0)

112
Instruction is killed.
(due toCP2_exc_0)
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gscanmode In
This signal should be asserted during all scan testing both while scanning and
during capture clocks. Thegscanmode signal must be deasserted during
normal operation.

gscanin_x In This signal is input to a scan chain. (x may be an integer greater than or equal
to 0)

gscanout_x Out This signal is output from a scan chain. (x may be an integer greater than or
equal to 0)

BistIn[n:0] In Input to the user-specified BIST controller

BistOut[n:0] Out Output from the user-specified BIST controller

Table 2-3 Signal Descriptions (Continued)

Signal Name Type Description
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Chapter 3

SRAM-Style Interface

This chapter describes the SRAM-style interface, the primary external interface present on the MIPS32™ M4K
processor core.

This chapter contains the following major sections:

• Section 3.1, "SRAM Interface Overview"

• Section 3.2, "SRAM Interface Description"

• Section 3.3, "SRAM Interface Timing Constraints"

• Section 3.4, "SRAM Interface Transactions"

3.1 SRAM Interface Overview

Instead of caches, the M4K core contains an interface to SRAM-style memories that can be tightly coupled to th
This permits deterministic response time with less area than is typically required for caches. The SRAM interfa
composed of separate unidirectional 32-bit buses for address, read data, and write data.

3.1.1 Dual or Unified Interfaces

The SRAM interface includes a build-time option to select either dual or unified instruction and data interfaces.

The dual interface, shown inFigure 3-1, enables independent connection to instruction and data devices. It gener
yields the highest performance, since the pipeline can generate simultaneous I and D requests which are then
in parallel.

Figure 3-1 Dual-Interface SRAM Block Diagram

For simpler or cost-sensitive systems, it is also possible to combine the I and D interfaces into a shared interfa
services both types of requests, as shown inFigure 3-2. If I and D requests occur simultaneously, priority is given to th
D side.

M4K core
Data

SRAM
device(s)

Instruction
SRAM

device(s)

D-SRAM i/fI-SRAM i/f

System i/f
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Figure 3-2 Unified-Interface SRAM Block Diagram

3.1.2 Backstalling

Typically, read or write transactions will complete in a single cycle. If multi-cycle latency is desired, however, th
interface can be stalled to allow connection to slower devices.

3.1.3 Redirection

When the dual I/D interface is present, a mechanism exists to divert D-side references to the I-side, if desired. 
redirection is employed automatically in the case of PC-relative loads in MIPS16e mode. The mechanism can 
explicitly invoked for any other D-side references, loads as well as stores. When theDS_Redirsignal is asserted, a D-side
request is diverted to the I-side interface in the following cycle, and the D-side will be stalled until the transactio
completed. Redirecting data stores to the I-side provides a method for initializing an I-SRAM device.

3.1.4 Transaction Abort

The core may request a transaction (fetch/load/store/sync) to be aborted. This is particularly useful in case of inte
Since the core does not know whether transactions are re-startable, it cannot arbitrarily interrupt a request whi
been initiated on the SRAM interface. However, cycles spent waiting for a multi-cycle transaction to complete c
directly impact interrupt latency. In order to minimize this effect, the interface supports an abort mechanism. Th
requests an abort whenever an interrupt is detected and a transaction is pending (abort of an instruction fetch 
be requested in other cases). The external system logic can choose to acknowledge the abort or can choose to i
abort request.

3.1.5 MIPS16e Execution

When the core is operating in MIPS16e mode, instruction fetches only require 16-bits of data to be returned. F
improved efficiency, however, the core will always fetch 32-bits of instruction data whenever the address is
word-aligned. Thus for sequential MIPS16e code, fetches only occur for every other instruction, resulting in be
performance and reduced system power.

3.1.6 Connecting to Narrower Devices

The instruction and data read buses are always 32-bits in width. To facilitate connection to narrower memories
SRAM interface protocol includes input byte enables that can be used by system logic to signal validity as part
data becomes available. The input byte enables conditionally register the incoming read data bytes within the co

M4K core
Instruction/Data

SRAM
device(s)

Unified
SRAM i/f

System i/f
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thus eliminate the need for external registers to gather the entire 32-bits of data. External muxes are required to
the narrower data to the appropriate byte lanes.

3.1.7 Lock Mechanism

The SRAM interface includes a protocol to identify a locked sequence, and is used in conjunction with the LL/SC a
read-modify-write semaphore instructions.

3.1.8 Sync Mechanism

The interface includes a protocol that externalizes the execution of the SYNC instruction. External logic might c
to use this information to enforce memory ordering between various elements in the system.

3.2 SRAM Interface Description

As introduced in Section 3.1.1, "Dual or Unified Interfaces", the M4K core may be build with either separate I- 
D-side interfaces or a single Unified Interface.

In case of the Dual Interface, a mechanism is available for the external agent to request a D-side transaction to
redirected to I-side. This redirection can be used for initializing a text segment (store instructions to I-space) or lo
constants from a boot-ROM (loading data from the I-side). The external agent will typically decide whether to re
a transaction based on its address. Note that the M4K core does not set any limitation on how to partition the a
range. The I-side and D-side address ranges may even overlap.

In case of the Unified Interface, instruction fetches and load/store transactions share a common interface.

3.2.1 Overview of I-side (Dual or Unified Interface)

The I-side is used for fetching instructions. It is also used for redirected load/store transactions. In case of the 
Interface, all load/store transactions are immediately redirected to I-side.

For the I-Side, the initial cycle of a transaction is indicated through assertion of one of three mutually-exclusive
signals:

• IS_Read (read transaction due to instruction fetch or redirected load).

• IS_Write (write transaction due to redirected store).

• IS_Sync (sync transaction due to redirected sync request, i.e. request to flush external I-side write buffers due
SYNC instruction, see also Section 3.2.5, "Sync").

The following buses/signals are also asserted:

• IS_Instr is asserted for read transactions due to instruction fetches.

• IS_Addr[31:2]holds the word-aligned address to be accessed in case of a read/write transaction, or the 5 bit “
field from the SYNC instruction (onIS_Addr[10:6]) in case of a sync transaction.

• IS_BE[3:0] selects the byte lanes to be accessed for a read/write transaction:

• IS_BE[3] enables byte lane corresponding to bits 31:24.

• IS_BE[2] enables byte lane corresponding to bits 23:16.

• IS_BE[1] enables byte lane corresponding to bits 15:8.
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• IS_BE[0] enables byte lane corresponding to bits 7:0.

• DS_WData[31:0] holds the data to be written in case of a redirected write transaction. This bus is shared with
D-side.

• IS_Lock is asserted for read transactions caused by a redirected load linked (LL) instruction (see Section 3.2
"Locking").

• IS_Unlock is asserted for write transaction caused by a redirected store conditional (SC) instruction (see Sec
3.2.4, "Locking").

The core may request a transaction to be aborted (e.g. in order to reduce interrupt latency). The core signals a
request by assertingIS_Abort. It is optional whether the external agent aborts the transaction or not. It should only a
the transaction in case it is replayable. See also Section 3.4.7, "Abort".

An I-side EJTAG break is signalled usingIS_EjtBreak. The external agent may choose to cancel the transaction in c
precise breaks are required. This is however optional.IS_EjtBreakis asserted the cycle following the initial transaction
cycle, so precise breaks will require transactions to be stalled for at least one cycle in case one or more breakpo
enabled.IS_EjtBreakEn indicates whether I-side EJTAG breakpoints are enabled or not. For the Dual Interface,
IS_EjtBreak is only asserted due to instruction breaks. For the Unified Interface,IS_EjtBreak may be asserted due to
either instruction or data breaks. See also Section 3.4.8, "EJTAG Hardware Breakpoints".

All the above signals are held until the terminating cycle, i.e. the cycle where the external agent signals comple
the transaction by deassertingIS_Stall. IS_Stallmust be valid starting in the clock cycle following the initial cycle. The
initial cycle is the one whereIS_Read/IS_Write/IS_Sync is first asserted.

A new transaction may be initiated immediately in the terminating cycle of the previous transaction. Note that t
indicates there is a combinational path fromIS_Stallto the start of a new transaction, for maximum performance. Th
is not the case for abort and EJTAG break signalling, sinceIS_Abort andIS_EjtBreak do not depend onIS_Stall.
IS_Abort andIS_EjtBreak are kept asserted up to and including the terminating cycle.

A set of status signals must be driven by the external agent in the terminating cycle. These signals are only us
terminating cycle; they are otherwise “don’t care” signals.

• IS_Error is asserted in case the transaction (read/write/sync) caused any kind of error. This will trigger a prec
instruction fetch bus error in case of an instruction fetch or a precise data bus error exception in case of a re
read/write/sync. See also Section 3.4.6, "Bus Error".

• IS_AbortAck is asserted in case the transaction (read/write/sync) was successfully aborted (following assertio
IS_Abort). IS_AbortAck is ignored ifIS_Error is asserted. For redirected transactions, ifIS_Abort was not asserted,
IS_AbortAck assertion causes a data bus error exception.

• IS_UnlockAckis set in response to a write transaction withIS_Unlockasserted. Assertion ofIS_UnlockAckindicates
that the core did have a lock on the address, so the redirected store conditional (SC) completes successfully

For read transactions, the external agent must supply the read data onIS_RData[31:0](assuming the transaction is not
redirected), while qualifying the individual byte lanes usingIS_RBE[3:0]. Partial data gathering is supported as
described in Section 3.4.4, "Data Gathering".

The M4K core drives one additional signal,IS_UnlockAll. This signal is asserted for one clock pulse whenever an ER
instruction is performed. This may be used by the external agent to unlock all addresses locked by the M4K co
also Section 3.2.4, "Locking").

3.2.2 Overview of D-side (Dual Interface)

For the D-Side of the Dual Interface, the initial cycle of a transaction is indicated through assertion of one of th
mutually-exclusive strobe signals:
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• DS_Read (read transaction due to LW/LH/LB/LWL/LWR/LWC2 instructions).

• DS_Write (write transaction due to SW/SH/SB/SWL/SWR/SWC2 instructions).

• DS_Sync (sync transaction, i.e. request to flush external D-side write buffers due to SYNC instruction, see als
Section 3.2.5, "Sync").

The following buses/signals are also asserted:

• DS_Addr[31:2]holds the word-aligned address to be accessed in case of a read/write transaction, or the 5 bit “
field from the SYNC instruction (onDS_Addr[10:6]) in case of a sync transaction.

• DS_BE[3:0] selects the byte lanes to be accessed for a read/write transaction:

• DS_BE[3] enables byte lane corresponding to bits 31:24.

• DS_BE[2] enables byte lane corresponding to bits 23:16.

• DS_BE[1] enables byte lane corresponding to bits 15:8.

• DS_BE[0] enables byte lane corresponding to bits 7:0.

• DS_WData[31:0] holds the data to be written in case of a write transaction.

• DS_Lock is asserted for read transactions caused by a load linked (LL) instruction (see Section 3.2.4, "Lockin

• DS_Unlock is asserted for write transaction caused by a store conditional (SC) instruction (see Section 3.2.4,
"Locking").

The core may request a transaction to be aborted in case an interrupt occurs (in order to reduce interrupt laten
core signals an abort request by assertingDS_Abort. It is optional whether the external agent aborts the transaction
not. It should only abort the transaction in case it is replayable. See also Section 3.4.7, "Abort".

An EJTAG data break is signalled usingDS_EjtBreak. The external agent may choose to cancel the transaction in c
precise breaks are required. This is however optional.DS_EjtBreakis asserted the cycle following the initial transaction
cycle, so precise breaks will require transactions to be stalled for at least one cycle in case one or more breakpo
enabled.DS_EjtBreakEn indicates whether data breakpoints are enabled or not. See also Section 3.4.8, "EJTAG
Hardware Breakpoints".

All the above signals are held until the terminating cycle, i.e. the cycle where the external agent signals comple
the transaction by deassertingDS_Stall. DS_Stallmust be valid starting in the clock cycle following the initial cycle. Th
initial cycle is the one whereDS_Read/DS_Write/DS_Sync is first asserted.

A new transaction may be initiated immediately in the terminating cycle of the previous transaction. Note that t
indicates there is a combinational path fromDS_Stallto the start of a new transaction, for maximum performance. Th
is not the case for abort and EJTAG break signalling, sinceDS_Abort andDS_EjtBreak do not depend onDS_Stall.
DS_Abort andDS_EjtBreak are kept asserted up to and including the terminating cycle.

A set of status signals must be driven by the external agent in the terminating cycle. These signals are only us
terminating cycle; they are otherwise “don’t care” signals.

• DS_Error is asserted in case the transaction (read/write/sync) caused any kind of error. This will trigger a pre
data bus error exception. See also Section 3.4.6, "Bus Error".

• DS_AbortAck is asserted in case the transaction (read/write/sync) was successfully aborted (following asserti
DS_Abort). DS_AbortAck is ignored in caseDS_Error is asserted. IfDS_Abort was not asserted,DS_AbortAck
assertion causes a data bus error exception.

• DS_Redir is asserted in case the transaction must be redirected to the I-side. This will cause the transaction
(read/write/sync) to be restarted on the I-side.DS_Redir is ignored in caseDS_Error or DS_AbortAck are asserted.
Note that in case the core attempts to abort a transaction due to an interrupt (by assertingDS_Abort), and the external
agent signals that the transaction was not aborted (DS_AbortAck not asserted), the transaction will not be redirecte
20 MIPS32™ M4K™ Processor Core Integrator’s Guide, Revision 01.03
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to I-side even ifDS_Redir is asserted. Instead of performing the redirection in this case, the transaction will be
canceled and the interrupt exception will be taken; typically, the interrupt service routine will return to the instru
that originated the D-side transaction and the transaction will be restarted and redirected this time (if no inter
pending). See also Section 3.4.3, "Redirection".

• DS_UnlockAck is set in response to a write transaction withDS_Unlock asserted. Assertion ofDS_UnlockAck
indicates that the core did have a lock on the address, so the store conditional (SC) completes successfully.

For read transactions, the external agent must supply the read data onDS_RData[31:0](assuming the transaction is not
redirected), while qualifying the individual byte lanes usingDS_RBE[3:0]. Partial data gathering is supported as
described in Section 3.4.4, "Data Gathering" on page 37.

3.2.3 Overview of D-Side (Unified Interface)

In case of the Unified Interface, all transactions are redirected immediately to the I-side. The only D-side signal u
this case is the shared write data bus,DS_WData[31:0].

3.2.4 Locking

The following signals are used for the locking mechanism.

• DS_Lock (not used for Unified interface).

• DS_Unlock (not used for Unified interface).

• DS_UnlockAck (not used for Unified interface).

• IS_Lock

• IS_Unlock

• IS_UnlockAll

• IS_UnlockAck

DS_Lock / IS_Lock are asserted when a load linked (LL) operation is performed on D-side and I-side respective
External logic may choose to register the corresponding address and, if it is currently unlocked, lock it.

Locking may imply one of the following:

• Prohibiting write to this address by another CPU.

• Monitoring whether such a write occurs and in this case set the status to unlocked.

The first approach will lock the address forever in case the application that caused the lock never unlocks it, or is
“task-switched” (in a multi-task operating system). Note that load linked may be performed by user mode applic

DS_Unlock/ IS_Unlockare asserted when a store due to a store conditional (SC) instruction is performed on D-sid
I-side respectively. If the CPU currently has a lock on the address, it must be unlocked andDS_UnlockAck /
IS_UnlockAck be asserted in the cycle terminating the transaction. If the CPU does not have a lock,DS_UnlockAck /
IS_UnlockAck must be deasserted in the cycle terminating the access.

DS_UnlockAck / IS_UnlockAck will be used as the return value for the SC instruction.

A typical software sequence trying to access a shared resource might look like this:

// Set bit 0 of shared resource (register). Address is stored in t1.
1: LL t0, 0(t1) // [IS|DS]_Lock  is asserted.

ORI t0, 1 // Set bit 0.
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SC t0, 0(t1) // [IS|DS]_Unlock  is asserted.
BEQ t0, zero, 1b // Result depends on internal lock bit and [IS|DS]_UnlockAck .
nop

Whenever an ERET instruction is performed,IS_UnlockAll is asserted for one cycle. In this case, external logic mu
unlock all addresses locked by the CPU. An ERET is typically issued for each task-switch performed by the op
system.

3.2.5 Sync

The MIPS32 SYNC instruction is used to guarantee that all read/write operations issued before the sync are fin
before issuing any new read/write operations. In order to be able to flush external write buffers, SYNC is extern
usingDS_Sync andIS_Sync.

Whenever a SYNC instruction occurs,DS_Sync is asserted (assuming Dual Interface). The external logic asserts
DS_Stall until all write buffers have been flushed. The external logic may request that the sync operation be red
to I-side in order to flush I-side write buffers. This is done using normalDS_Redir signalling.

For the Unified Interface, a SYNC instruction causesIS_Sync to be asserted immediately.

The MIPS32 SYNC instruction includes a 5 bit “stype” field optionally used for indicating one of several “sync types
This field is externalized usingDS_Addr[10:6] / IS_Addr[10:6].

A sync operation may be aborted due to interrupts using the sameDS_Abort/IS_Abort signalling as used for reads and
writes.

DS_Error/IS_Error may be used to signal an error condition the same way as for reads and writes. An error ind
will cause a bus error exception to be taken.

3.2.6 SimpleBE Mode

Individual load and store instructions can generate SRAM-interface transactions with byte enable patterns that
directly supportable on other bus standards. To facilitate connection to these types of buses, the core has a mod
it will only generate bus transactions that are naturally aligned bytes, halfwords, or words. This is referred to as
SimpleBE mode, selected whenSI_SimpleBE[1:0]is set to 012. The default mode for the SRAM interface, in which the
full range of byte enable combinations may occur, is selected whenSI_SimpleBE[1:0] is set to 002. Note that the
SI_SimpleBEbus is a static input which must be set to DC values at power-up of the core. The other two possible v
of SI_SimpleBE are currently reserved and should not be selected.

Allowable byte enables in SimpleBE mode are shown inTable 3-1.

Table 3-1 Allowable Byte Enables in SimpleBE Mode

DS_BE[3:0] or
IS_BE[3:0]

(binary)

0001

0010

0100

1000

0011
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The only read operations that attempt to generate a complex byte enable combination result from LWL/LWR lo
instructions requesting a tri-byte from memory. Since external logic can easily convert a tri-byte read into a full
read if desired, no conversion is performed by the core for this case. Thus, tri-byte read byte enables will be re
on the interface, even in SimpleBE mode.

Tri-byte writes resulting from the SWL/SWR instructions can also attempt to generate complex byte enable
combinations. When a tri-byte write transaction is detected internally in SimpleBE mode, the core will split the 
into two separate transactions on the bus, each of which uses one of the byte enable values listed inTable 3-1. The first
write will always contain a valid halfword, while the second will hold a valid byte.

3.2.7 External Write Buffer

Some system designs may include a write buffer between the M4K core and memory, as shown simplified onFigure 3-3
(shown for D-side of Dual Interface, but something similar might also apply to the I-side). A simple one entry w
buffer here can help with several aspects of the system design while maintaining high system performance. If a
multi-level memory is present, an address decode would need to be done to determine where a write should g
always writing into the write buffer, the address decode can happen during the following cycle. Additionally, de
the write by a cycle can keep EJTAG breaks precise. If a break is detected, the write buffer can be invalidated 
memory is updated.

The write buffer contents can be written to memory opportunistically. The core has a signal,DS_WbCtl,to identify these
opportunities. Assertion of this signal indicates that this clock cycle will NOT be the initial cycle of a read transac
A read is the only core transaction that will need access to the SRAM. Since writes go to the write buffer, the pre
write can be pushed out to the SRAM during a new write cycle. This allows back to back writes with no perform
degradation and ensures that there will always be an opportunity to empty the write buffer.

If there is a pending transaction, the M4K core assumes that it will terminate in this cycle, in order to determine wh
a new read transaction might be started or not. This eliminates asynchronous paths from core input signals (DS_Stallor
others) toDS_WbCtl (unlikeDS_Reador DS_Write). DS_WbCtl is also a slightly earlier signal thanDS_Reador
DS_Write.

The same mechanism is available at the I-side, throughIS_WbCtl.

1100

1111

Table 3-1 Allowable Byte Enables in SimpleBE Mode

DS_BE[3:0] or
IS_BE[3:0]

(binary)
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Figure 3-3 External write buffer

3.3 SRAM Interface Timing Constraints

All signals in the SRAM interface are synchronous to the rising edge of the primary input clock,SI_ClkIn. Many signals
are not fully registered, however. Outputs on the SRAM interface may have a significant amount of logic after t
preceding flop(s), and inputs may go through some combinational logic before being registered by the core. Also
are combinational paths between some input signals and some output signals (for example,DS_Stalldetermines whether
a new transaction may be started, so there is a combinational path fromDS_Stall to DS_Read, DS_Write etc.). This
situation complicates timing analysis associated with the core, but is necessary in order to achieve maximum
performance of the interface.

The expression of timing constraints for the SRAM interface depends on many factors, such as maximum targ
frequency, process technology, standard cell library characteristics, setup/hold and access times for the SRAM d
etc., so it is difficult to provide a generic set of timing guidelines that will apply in all situations. The “Timing Constra
column inTable 3-2 shows the timing of SRAM interface signals, expressed as a percentage of the minimum tar
period, since most users are usually interested in achieving the maximum possible frequency of the core.

Many of the outputs arrive late in a cycle, so the external SRAM block can’t perform much additional logic on the
the cycle they are driven, without adversely affecting the overall cycle time of the core. TheIS_Stall, DS_Stall, and
DS_Redirsignals are particularly critical inputs to the core. Care must be taken in the amount of logic performed b
external SRAM block when driving these signals. For lower target frequencies, of course, the timing constraints
in Table 3-2 can be relaxed.

Table 3-2 Timing Constraints

Signal Name Type
Timing Constraint,
as % of min. cycle

DS_Read Out 90

DS_Write Out 90

DS_Sync Out 90

DS_WbCtl Out 75

M4K core

Data
SRAM

device(s)

Writebuffer

Control logic
R/W strobes, Mux select

Address,
Byte enable,
Write Data

R/W strobes,
DS_WbCtl

DS_Addr[31:2], DS_BE[3:0]

DS_RData[31:0], DS_RBE[3:0]

DS_WData[31:0]
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DS_Addr[31:2] Out 90

DS_BE[3:0] Out 90

DS_WData[31:0] Out 90

DS_Abort Out 90

DS_EjtBreakEn Out 50

DS_EjtBreak Out 90

DS_Lock Out 90

DS_Unlock Out 90

DS_Stall In 25

DS_Error In 25

DS_AbortAck In 25

DS_Redir In 25

DS_UnlockAck In 80

DS_RData[31:0] In 80

DS_RBE[3:0] In 25

IS_Read Out 90

IS_Write Out 90

IS_Sync Out 90

IS_WbCtl Out 50

IS_Instr Out 90

IS_Addr[31:2] Out 90

IS_BE[3:0] Out 90

IS_Abort Out 90

IS_EjtBreakEn Out 50

IS_EjtBreak Out 90

IS_Lock Out 90

IS_Unlock Out 90

IS_UnlockAll Out 90

IS_Stall In 25

IS_Error In 25

IS_AbortAck In 25

IS_UnlockAck In 80

IS_RData[31:0] In 60

IS_RBE[3:0] In 25
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3.4 SRAM Interface Transactions

Waveforms illustrating various SRAM interface transactions are shown in the following subsections. Most figure
assume that a dual I/D interface is present, and show D-side transactions (in some cases redirected to I-side). H
I-side (and thus Unified Interface) transactions work the same way, except there is no I- to D-side redirection mech

Unless stated otherwise, I-side waveforms assume that 32 bit MIPS32 instruction fetches are being continuous
performed.

The net labeled “clk” shown in all timing waveforms is actually theSI_ClkIn primary clock input pin to the core.

3.4.1 Simple Reads and Writes

This section describes several basic read and write transactions.

3.4.1.1 Single Read

Figure 3-4illustrates the fastest read, a single cycle D-side read operation. The transaction is initiated by the core i
1, as it asserts the read strobe (DS_Read), as well as the desired word address (DS_Addr[31:2]) and output byte enables
(DS_BE[3:0]). The byte enables represent the lower two bits of the address, as well as the requested data size
identify which of the four byte lanes onDS_RData in which the core expects the read data to be returned.

The external agent is able to process the read immediately, so it deasserts stall while returning the appropriate r
(DS_RData[31:0]) and the input byte enables (DS_RBE[3:0]) in the following clock, cycle 2, and the transaction
completes successfully. The input byte enables control sampling of the corresponding byte lanes forDS_RData, and
must be asserted appropriately. There is no explicit hardware check that the input byte enables actually correspo
the requested output byte enables. If some of the necessary input byte enables are not asserted, the core will 
erroneously) just use the last read data held in the input registers for those byte lanes.

The interface protocol does not include an explicit “read acknowledge” strobe; for simplicity, the transaction is iden
to be complete solely by the first cycle following a read strobe in which stall (DS_Stall) is deasserted. Other signals
(DS_Error, DS_Redir, DS_AbortAck, DS_UnlockAck) indicate the status of a transaction, but the completion itself i
identified only through the deassertion ofDS_Stall; the status signals are ignored by the core whenDS_Stallis asserted.

In a typical system, the read data is returned from an SRAM device that is accessed synchronously on the rising
cycle 2, with the address and strobe information provided by the core in cycle 1. The read data can be returne
device that meets the protocol timing, such as ROM, flash, or memory-mapped registers.
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Figure 3-4 Single Cycle Read

3.4.1.2 Single Write

Figure 3-5 illustrates the fastest write, a single cycle D-side write operation. The transaction is initiated by the c
cycle 1, as it asserts the write strobe (DS_Write), as well as the desired word address (DS_Addr[31:2]), write data
(DS_WData[31:0]), and output byte enables (DS_BE[3:0]). The byte enables identify which of the four byte lanes in
DS_WData hold valid write data.

The external agent is able to successfully acknowledge the write immediately, so it deasserts stall (DS_Stall) in the
following clock, cycle 2, to complete the write. Note that the interface protocol does not include an explicit “writ
acknowledge” strobe; the transaction is identified to be complete simply by the deassertion of stall.
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Figure 3-5 Single Cycle Write

3.4.1.3 Read with Waitstate

Figure 3-6illustrates a D-side read operation with a single waitstate. This transaction is similar to the single-cycle
in Figure 3-4, only now a stall (DS_Stall) is asserted for one cycle and the read data is returned a cycle later.

The transaction is initiated by the core in cycle 1, as it asserts the read strobe (DS_Read), as well as the desired word
address (DS_Addr[31:2]) and output byte enables (DS_BE[3:0]).

The external agent is not ready to complete the read immediately, so it assertsDS_Stall in cycle 2. Note that during a
stall, the core holds the read strobe, address and output byte enables valid, and ignores values driven on the inp
signals (DS_Error, DS_Redir, DS_AbortAck).

Also during a stall (cycle 2 in this example), the input byte enables (DS_RBE[3:0]) will continue to control which byte
lanes on the read data bus (DS_RData[31:0]) are registered by the core. To reduce power consumption, an external a
may want to deassert the input byte enables during a long stall, and then the core won’t see spurious changes on
data bus. But it is functionally acceptable to just tie the input read byte enables high all the time, for simplicity.
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In cycle 3, the read data becomes available, so the external agent deassertsDS_Stalland returns the appropriate read dat
(DS_RData[31:0]) and the input byte enables (DS_RBE[3:0]). In this example, no error or redirection is signaled, so th
transaction completes successfully in cycle 3.

Figure 3-6 Read with One Waitstate

3.4.1.4 Write with Waitstate

Figure 3-7illustrates a D-side write operation with a single waitstate. This transaction is similar to the single-cycle
in Figure 3-5, only now a stall (DS_Stall) is asserted for one cycle and the write is completed a cycle later.

The transaction is initiated by the core in cycle 1, as it asserts the write strobe (DS_Write), as well as the desired word
address (DS_Addr[31:2]), write data (DS_WData[31:0]), and output byte enables (DS_BE[3:0]).

The external agent cannot acknowledge the write immediately for some reason, so it assertsDS_Stall in cycle 2. The
core outputs are held valid through the stall. Finally in cycle 3, the write can be accepted, soDS_Stalldeasserts, and the
error and redirection signals also deassert to indicate a normal completion.
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Figure 3-7 Write with One Waitstate

3.4.1.5 Read Followed by Write

Figure 3-8illustrates a single cycle D-side read operation followed immediately by a single cycle D-side write opera
This example represents the back-to-back concatenation of the single-cycle read shown inFigure 3-4 with the single
cycle write fromFigure 3-5.

The read is initiated in cycle 1, with the core’s assertion of the read strobe, read address, and read output byte
The external agent is able to fulfill the read request in cycle 2, so it deasserts stall and drives the read data and in
enables in cycle 2.

Since there is no stall from the read in cycle 2, the core is immediately able to initiate another transaction in the
cycle (if it has one pending), this time a write. Note that the SRAM-style interface logic contains a combinationa
from DS_Stallto the start of a new transaction, for maximum performance. The external agent can accept the wr
no stall is asserted in cycle 3 and the write finishes.
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Figure 3-8 Read followed by write (single cycle)

3.4.1.6 Read Followed by Write, with Waitstates

Figure 3-9 illustrates a one waitstate D-side read operation followed immediately by a one waitstate D-side writ
operation. This example is similar to the back-to-back read/write case inFigure 3-8, only now each of the two
transactions includes one waitstate.

The read is initiated in cycle 1, with the core’s assertion of the read strobe, read address, and read output byte
The external agent cannot complete the read immediately, so it asserts stall in cycle 2. This forces the core to 
read-related outputs for another cycle, and precludes the core from starting a new transaction. In cycle 3, stall de
and the read data and input byte enables are driven valid, completing the read.

The stall deassertion in cycle 3 allows the core to start its next pending transaction, this time a write. The externa
is not ready to accept the write, so it asserts stall again in cycle 4. Finally in cycle 5, the write can complete, so
deasserts and the write finishes.
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Figure 3-9 Read followed by write (one waitstate)

3.4.2 MIPS16e Instruction Fetches

Most instruction fetches are performed as a full word read (32 bits) on the I-side interface, so all bits ofIS_BE[3:0]are
usually asserted. Even in MIPS16e mode, where 16-bit instructions are executed, most fetches are still performe
word fetches in order to optimize the I-side bandwidth. The core holds the full word in an internal buffer, and ther
usually only needs to perform a fetch when executing every other MIPS16e instruction. When a jump or branch
to the middle of a word in MIPS16e mode, however, the core will perform a halfword (16-bit) fetch.

Figure 3-10 illustrates instruction fetches when executing in MIPS16e mode, assuming no waitstates.

A word-aligned fetch at addr0 is requested in cycle 1. This causes a 32 bit word (for example, containing two
non-extended MIPS16e instructions, “instr0” and “instr1”) to be fetched (the current as well as the following
instruction).

This example assumes that the code is executed sequentially up to this point, so no read is necessary for the 
instruction (i.e. no read request in cycle 2). The example assumes that “instr1” is a jump to a non word aligned a
(addr5).
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In cycle 3, a word-aligned fetch from addr2 is requested. Again, a full instruction word is fetched, but in this cas
assumed that only one 16 bit instruction is used (“instr2”, which is the jump delay slot of “instr1”).

In cycle 4, a fetch occurs for the instruction at the jump target address (addr5). The figure illustrates the case wher
is not word aligned, so only 16 bits (“instr5”) are read. Endianness is assumed to be little, soIS_BE[3:0] = “1100”. In
the big endian case,IS_BE[3:0] would have been “0011”.

In cycle 5, a full word fetch occurs for the following 2 instructions after the jump target, stored at addr6.

Figure 3-10 MIPS16e instruction fetches (single cycle, little endian mode)

3.4.3 Redirection

When dual I and D interfaces are present, it is possible to redirect a D-side operation to the I-side for completion
mechanism might be useful if the system wants to read data that is stored in an I-side device, or to initialize an
SRAM with data store instructions that would normally be presented to the D-side. There is no mechanism to r
I-side references to the D-side. Also, the PC-relative load instructions present in the MIPS16e ASE use an inte
method within the core to present loads to the I-side, and therefore do not use the explicit external redirection
mechanism.

When a D-side transaction has been redirected to the I-side, the core will never initiate a new D-side transactio
the redirected one has completed on the I-side.

If a redirection request occurs while an interrupt is pending (see Section 3.4.7, "Abort"), the redirection reques
actually be ignored by the core to reduce interrupt latency, even if the abort is not explicitly acknowledged by the ex
agent. The interrupt will be taken on the instruction that initiated the D-side transaction. After execution of the inte
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service routine, this instruction will typically be re-executed, where it will then be redirected (if so requested by
DS_Redir, and no interrupts are pending this time).

Several examples of D-side operations redirected to I-side are illustrated. The examples assume that the redir
D-side transaction immediately gets access to the I-side external interface. This is the typical case since redirecte
accesses have priority over I-side instruction fetches.

3.4.3.1 Redirected Read, Single-Cycle

Figure 3-11 illustrates a single-cycle D-side read operation whereDS_Redir is used for requesting the operation to be
redirected to the I-side. In this example, the I-side read operation is also single cycle.

The data read begins in cycle 1, like the simple read introduced inFigure 3-4. The external agent decides that the rea
must be handled by the I-side array, so it deassertsDS_Stallwhile assertingDS_Redirin cycle 2. The D-side transaction
is thus terminated, but with the status that it must be redirected to the I-side for completion. The I-side is able to s
request immediately, so the read strobe (IS_Read), address (IS_Addr[31:2]) and byte enables (IS_BE[3:0]) from the
original data read request are driven in cycle 3. Note thatIS_Instris deasserted in cycle 3. The external agent returns t
requested read data (IS_RData[31:0]) and input byte enables (IS_RBE[3:0]) in cycle 4, and the redirected transaction
completes since there is no stall.

Figure 3-11 Redirected read (single cycle)
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3.4.3.2 Redirected Read with Waitstate

Figure 3-12illustrates a one waitstate D-side read operation whereDS_Rediris used for requesting the operation to be
redirected to the I-side. In this example, the I-side read operation also has one waitstate.

The data read again begins in cycle 1. The external agent decides to stall the core for one cycle starting in cyc
assertingDS_Stall. Then in cycle 3, the agent decides to redirect the data read request to the I-side. In cycle 4, th
drives the original data read signals on the I-side interface. The I-side is not available for some reason, so the 
agent assertsIS_Stall in cycle 5, causing the core to hold its strobe, address, and byte enables valid for another 
Finally in cycle 6, the agent deasserts stall, returns the requested read data, and the transaction completes.

Figure 3-12 Redirected read (one waitstate)

3.4.3.3 Redirected Write, Single-Cycle

Figure 3-13 illustrates a single cycle D-side write operation whereDS_Redir is used for requesting the operation to b
redirected to I-side. In this example, the I-side write operation is also single cycle. Writes redirected to the I-side
be used as a method for initializing the instruction code space, as writes to instruction memory are not otherwise p
from the core.

The D-side write initiated in cycle 1 is requested for redirection in cycle 2. In cycle 3, the core drives the I-side 
strobe, address, byte enables, and data. A redirected write is the only way that theIS_Write strobe is asserted. There is
no write data bus on the I-side, so the write data continues to be held on theDS_WData[31:0] bus. The external agent
can accept the data immediately, so the transaction completes in cycle 4 since there is no stall.
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Figure 3-13 Redirected write (single cycle)

3.4.3.4 Redirected Write with Waitstate

Figure 3-14illustrates a one waitstate D-side write operation whereDS_Rediris used for requesting the operation to be
redirected to I-side. In this example, the I-side write operation also has one waitstate.

The sequence shown inFigure 3-14 is similar to the single cycle write redirection inFigure 3-13, only this time one
waitstate is asserted on the D-side before the redirection is signaled, and then another waitstate is signaled on t
before the write is accepted.
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Figure 3-14 Redirected write (one waitstate)

3.4.4 Data Gathering

The SRAM interface includes a “data gathering” capability that uses input byte enable signals,DS_RBE[3:0],to control
input data registers and allow the read data to be registered within the core as it becomes available. The same me
is available for the I-side, usingIS_RBE[3:0].

As the core contains 32-bit interfaces for read data, the gathering capability enables the connection to narrower m
with minimal logic external to the core. Read data must be aligned to the appropriate byte lane by external logic,
input byte enables remove the need for external flops to hold partial read data while it is collected.

The gathering capability is illustrated inFigure 3-15. The data read is initiated by the core in cycle 1, as normal. In th
example, the requested read data is 32 bits wide, but it will be returned one byte at a time. The external agent 
DS_Stallfor 3 clocks, starting in cycle 2. In cycles 2-4, a single byte of read data is returned each clock, as indica
the input byte enables (DS_RBE[3:0]), while stall remains asserted. Finally in cycle 5, stall is deasserted and the 
byte is returned, completing the read transaction.

The input byte enables,DS_RBE[3:0], simply act as enables on the conditional flops that capture the read data bu
DS_RData[31:0]. The core does not perform any explicit checking to ensure that the requested bytes, as indica
DS_BE[3:0], were actually returned, as indicated byDS_RBE[3:0]. It is up to the external agent to ensure that the
appropriate read data is actually returned. If the necessary input byte enables were not asserted before the tra
completes, the core will use the last data held by the byte-wide input flops, which will probably not be the desir
behavior.

While stall is asserted, minimal system power will usually be achieved when the valid data byte is strobed only on
the appropriateDS_RBE signal. However, the core input flops will be overwritten each cycle that aDS_RBE bit is
asserted, while the transaction is still active.
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Figure 3-15 Word read, data arriving bytewise

3.4.5 Sync

This section illustrates several examples of the protocol associated with the execution of a SYNC instruction. An e
indication of SYNC execution is provided to allow external agents to order memory operations, if desired.

3.4.5.1 Sync with Waitstate

Figure 3-16 illustrates D-side sync signaling for flushing external write buffers. One waitstate is assumed in this
example.

The sync signaling is initiated in cycle 1, as indicated by the sync strobe,DS_Sync. The 5-bit “stype” field encoded
within the SYNC instruction is provided on the address bus,DS_Addr[10:6]. The location of the stype field on the
address bus matches its field position within the SYNC instruction word. A sync transaction is terminated just l
normal read, in the first non-stall cycle after the sync strobe. If an external agent wants to flush external write buff
allow other pending memory traffic to propagate through the system, it can stall acknowledgment of the sync by as
the normal stall signal,DS_Stall. In this example, one such stall cycle is shown, starting in cycle 2. Then in cycle 3, s
deasserts and the sync transaction is terminated. In a sync transaction, no read data is returned, so the values
DS_RData andDS_RBE signals are ignored by the core.
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Figure 3-16 Sync (one waitstate)

3.4.5.2 Redirected Sync

Figure 3-17 illustrates sync signaling where the sync operation is requested to be redirected to I-side in order to
I-side external write buffers. One waitstate for both D- and I-side is assumed in this example.

Usually, memory ordering around D-side transactions is desired, so the sync would only take effect on the D-s
the sync transaction, much like a read, can also be redirected to the I-side, if desired.

In this example, the sync is initiated on the D-side in cycle 1. The external agent responds with a stall in cycle 2,
redirection request to the I-side in cycle 3. In cycle 4, the core drives the I-side strobe (IS_Sync) and stype information
on the address bus (IS_Addr[10:6]). Note thatIS_Instralso deasserts in cycle 4, to indicate that the I-side transaction
not due to an instruction fetch. The external agent cannot acknowledge the sync immediately, so it asserts stall
5. Finally in cycle 6, the stall deasserts and the redirected sync transaction is completed.
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Figure 3-17 Redirected sync (one waitstate)

3.4.6 Bus Error

Examples of the error protocol are shown in this section. An error is indicated through theDS_Error or IS_Error pins,
and ultimately results in a precise data or instruction bus error exception within the core. The assertion ofDS_Errorwill
always result in a data bus error exception. The assertion ofIS_Errorwill result in an instruction bus error exception if
the transaction is a fetch, or a data bus error exception if the transaction is a data request (redirected or unified in

3.4.6.1 Bus Error on Single Cycle Read

Figure 3-18 illustrates a single-cycle D-side read operation causing a bus error, signalled viaDS_Error.

The read is initiated in cycle 1, as normal. This time, the external agent has identified an error condition for some r
so it responds by deassertingDS_Stallwhile assertingDS_Error in cycle 2. This terminates the read transaction on th
bus with an error status. Any values returned on theDS_RData andDS_RBE buses will be captured by the input data
registers, but are otherwise ignored by the core. The termination of a read transaction withDS_Errorwill result in a data
bus error exception within the core.
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Figure 3-18 Read with error indication (single cycle)

3.4.6.2 Bus Error on Read with Waitstate

Figure 3-19 illustrates a one waitstate D-side read operation causing a bus error.

Again, the read transaction begins normally in cycle 1. A stall is asserted in cycle 2. Finally in cycle 3, the external
has identified an error condition so it deasserts stall and terminates the read transaction with error status, via the a
of DS_Error. The value ofDS_Error, as well as any other core input for that matter, is ignored by the core whene
DS_Stall is asserted.

Figure 3-19 Read with error indication (one waitstate)
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3.4.7 Abort

Due to the nature of the core pipeline, it may sometimes be desirable to abort a transaction on the SRAM-style in
before it completes.

Normally, interrupts are taken on the E-M boundary of the pipeline. Since a D-side interface transaction occurs
the M-stage, a pending interrupt must wait for the outstanding transaction to complete. If this transaction has m
waitstates, interrupt latency will be degraded. To improve interrupt latency, a mechanism exists on the SRAM int
that allows an outstanding transaction to be aborted. Generally, a transaction must have at least one waitstate or i
make sense to abort it.

Use of the abort mechanism is optional. If a load/store/sync transaction is successfully aborted following an int
then the interrupt will be taken on the load/store/sync instruction that initiated the transaction. In this case, care m
taken to ensure that the aborted transaction can be replayed with no ill effects in the system. If the transaction
aborted, then the interrupt is simply taken on the instruction following the load/store/sync.

Examples of aborted transactions are discussed in the following subsections.

3.4.7.1 Aborted Read

Figure 3-20 illustrates a one waitstate D-side read operation with an abort request. In this example, external log
able to abort the operation, and signals the acknowledgment through assertion ofDS_AbortAck.

The read begins normally in cycle 1, due to a load instruction. An interrupt is pending, so the core signals an a
request, by assertingDS_Abort in cycle 2. Whether the external agent responds to the abort request is completely
optional. Also in cycle 2, the external agent is not ready to complete the read, so it asserts stall. In cycle 3, the e
agent decides to abort the pending read transaction, so it deasserts stall while assertingDS_AbortAckand the transaction
is aborted. The interrupt will be taken on the load instruction. Depending on the interrupt handler, instruction flow
likely return to this load after processing the interrupt, and the aborted read transaction will be replayed.

Figure 3-20 Aborted read (one waitstate)

3.4.7.2 Unsuccessful Abort for Single-Cycle Write

Figure 3-21 illustrates a single-cycle D-side write operation with an abort request. In this example, the external 
ignores the request and does not abort the operation.
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The write is initiated in cycle 1. Due to a pending interrupt, the core signals an abort request in cycle 2. The ex
agent chooses not to abort the write, so it does not assertDS_AbortAck. The transaction completes normally in cycle 2
since no stall was asserted and the error, redirection and abort acknowledge status signals were deasserted.

Figure 3-21 Unsuccessful Abort attempt for write (single cycle)

3.4.7.3 Aborted Multi-Cycle Write

Figure 3-22illustrates another case of a successfully aborted operation. This example demonstrates that the abort
can be signaled several cycles after the transaction has started.

This time, a write request is initiated in cycle 1. The external agent is not ready to complete the write, so it asser
in cycles 2 and 3. In cycle 4, an interrupt causes the core to signal an abort request. This causes the external a
terminate the access in cycle 5 (deassertingDS_Stall), while assertingDS_AbortAck to indicate that the write was
aborted.
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Figure 3-22 Aborted write (multi cycle)

3.4.8 EJTAG Hardware Breakpoints

EJTAG hardware breakpoints present another twist on the SRAM-style interface. Hardware breakpoints are one
to achieve entry into EJTAG debug mode. When a breakpoint occurs, a debug exception must be taken on the ins
fetch, data load, or data store instruction itself, but the exception is not known until the transaction has already
on the interface. Hence, the breakpointed transaction may have accessed memory, but will be replayed after re
from the debug exception. If this transaction is not replay-able, it should not be allowed to access or modify me
until it is certain that no breakpoint will occur. At least one waitstate is necessary to identify a transaction that m
potentially take an EJTAG breakpoint exception.

Note that no acknowledge is signalled as response to EJTAG break indications (DS_EjtBreak or IS_EjtBreak). The
exception is always taken on the instruction fetch, data load, or data store instruction causing the break.

Also note that for a data read operation, a data break may depend on the data value read and so may be trigg
the read has finished. In case the read is followed by a new transaction, the new transaction may already have
initiated when the break is detected. In this case, the EJTAG break is signalled in the cycle following the cycle in
the read was terminated and the new access was initiated.

3.4.8.1 EJTAG Break on Data Write

Figure 3-23 illustrates a one-waitstate D-side write operation causing an EJTAG data break. The EJTAG data b
signalled usingDS_EjtBreak.

The write begins in cycle 1, as usual.DS_EjtBreakEn has been asserted for a while, indicating that EJTAG data
breakpoints are enabled. The external agent can elect to use this signal to conditionally add waitstates, if replays
be tolerated when a breakpoint event ultimately occurs. In cycle 2, the core assertsDS_EjtBreak to indicate that a
hardware breakpoint has been detected. Also in cycle 2, the external agent asserts a stall. Finally in cycle 3, th
terminates the write transaction by deassertingDS_Stall. The core pipeline will take a debug exception on the store
instruction that caused the write transaction, go into debug mode, and eventually upon exit from the debug hand
restart the store that caused the EJTAG break.
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If the system cannot tolerate replay of the breakpointed transaction, then it should not allow the transaction to 
memory. However, it must indicate a completion of the breakpointed transaction by deasserting stall; otherwise, t
will be stalled indefinitely.

Figure 3-23 EJTAG data write break (one waitstate)

3.4.8.2 EJTAG Break for Data Write, Unified Interface

Figure 3-24illustrates a data write operation on the Unified Interface. The data write causes an EJTAG data break,
is signalled usingIS_EjtBreak.

The data write begins in cycle 1. Note that theIS_Writestrobe is asserted, whileIS_ReadandIS_Instrare deasserted, to
indicate that a data write is occurring on the Unified Interface.IS_EjtBreakEnsignal is asserted, since data breakpoin
and/or instruction breakpoints, have been enabled. In cycle 2, the core detects a data breakpoint, and indicate
assertingIS_EjtBreak. The external agent also stalls the write by assertingIS_Stall in cycle 2. Finally in cycle 3, the
external agent terminates the transaction by deassertingIS_Stall. The external agent must signal the completion of th
transaction in the normal manner (by deasserting stall). Again, the system is free to decide whether it actually allo
breakpointed write to update unified memory, according to its tolerance for replay.
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Figure 3-24 EJTAG data write break for Unified Interface (one waitstate)

3.4.9 Lock

Figure 3-25illustrates the locking mechanism available to handle semaphores on the interface. This mechanism
during the execution of D-side “load linked” / “store conditional” (LL/SC) operations.

The data read resulting from an LL instruction is initiated in cycle 1. The LL is indicated by the core’s high-activ
assertion of theDS_Lock signal in cycle 1. External logic can use this information to attempt to set a lock on the
requested address, and prevent other devices from accessing the address if the lock is obtained. The read comp
single clock, in cycle 2. Then in cycle 4, the core starts a write resulting from an SC instruction, as indicated by
assertion of theDS_Unlock signal. The external agent can signal whether it was able to maintain the desired lock
returning the status onDS_UnlockAck. The value returned onDS_UnlockAckis written by the core into the destination
register specified by the SC instruction.

In this example, the read address from the LL (addr0) and the write address from the SC (addr1) are different.
completely up to the external logic as to whether locks it maintains are address-specific or not.

While this example has assumed a data operation occuring on a the D-side of a Dual Interface, I-side signaling
for redirected (or Unified Interface) LL/SC operations. I-side lock signaling works the same way as the D-side.

An additional signal,IS_UnlockAll, is related to the locking mechanism but not shown inFigure 3-25. IS_UnlockAllis
asserted for one cycle whenever an ERET instruction is performed. This signal is only present on the I-side (an
therefore the Unified Interface), and has no equivalent on the D-side. Whenever an ERET instruction is execut
IS_UnlockAll is asserted for one cycle. When this occurs, external logic can unlock all addresses locked by tha
An ERET is typically issued for each task-switch performed by the operating system.
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Figure 3-25 Locking (single cycle)
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Chapter 4

EJTAG Interface

This chapter discusses chip-level integration details for the EJTAG-related signals on a MIPS32™ M4K™ core, a
as some system level requirements. A comparison of EJTAG versus JTAG is covered first, to clarify the differenc
similarities. Then EJTAG chip and system issues related to one or multiple M4K cores within a single chip are disc

This chapter contains the following sections:

• Section 4.1, "EJTAG versus JTAG"

• Section 4.2, "How to Connect EJ_* Pins"

• Section 4.3, "Multi-Core Implementations"

• Section 4.4, "EJTAG Trace"

An EJTAG TAP controller is an optional feature in a M4K core. If the M4K core under use does not contain the EJ
TAP controller, then much of this chapter is irrelevant.

Reference to the generalEJTAG Specification[2] can be found several times in this chapter. MIPS recommends that y
become familiar with the general EJTAG Specification in addition to this chapter, before deciding how to integra
EJTAG into your chip.

4.1 EJTAG versus JTAG

The name EJTAG is often confused with IEEE JTAG boundary scan, but EJTAG is not related to boundary scan. E
is a set of hardware-based debugging features on a MIPS processor, accessible by debug software. EJTAG is
software programmers to control and debug code execution, as well as to access hardware resources within a
processor during code development. The interface for EJTAG access to the core uses a superset of the JTAG 
interface, but that is really its only similarity with boundary scan.

Read the “EJTAG Debug Support” chapter in theMIPS32™ M4K™ Processor Core Software User’s Manual[1]to learn
more about the software debugging capabilities of EJTAG.

4.1.1 EJTAG Similarities to JTAG

From a functional viewpoint, the following features are inherited from the JTAG TAP interface:

• Protocol for selecting data and control registers usingEJ_TMS.

• Serial protocol for transmitting data in and out of the selected register usingEJ_TDI andEJ_TDO.

• Asynchronous reset to the EJTAG TAP controller usingEJ_TRST_N (TRST*).

• EJ_TCK driving the clock input of all the EJTAG TAP controller registers.

Because of these similarities, it is possible to share certain physical resources between the TAP controllers in 
and JTAG. MIPS recommends NOT sharing any logic or pins between JTAG and EJTAG. MIPS recognizes that re
pin count is often necessary in large System-on-a-Chip (SOC) chip designs.
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4.1.2 Sharing EJTAG Resources with JTAG

It is theoretically possible to share the TAP controller for JTAG and EJTAG purposes because the EJTAG contr
commands do not use reserved JTAG commands. This TAP sharing is not supported by the M4K core, howeve
M4K core has its own independent TAP controller that is reserved exclusively for EJTAG operation.

Because the EJTAG electrical specification is identical to the JTAG specification, it is possible to share the physic
pins between the two TAP controllers between EJTAG and JTAG. There are two ways this might be accomplishe
both of them have issues which must be considered.

4.1.2.1 Daisy-Chained TDI-TDO

One method is to hook up the physical pinsTCK, TMS andTRST* in parallel to both TAP controllers, and then
daisy-chain theTDI/TDO pins in the following manner:

• physical pinTDI to JTAGTDI

• JTAGTDO to EJTAGEJ_TDI

• EJTAGEJ_TDO to physical pinTDO.

• EJTAGEJ_TDOzstate to output enable of physicalTDO.

Figure 4-1 on page 49 shows the serialTDI-TDO chain setup with parallel control of the TAP controllers.

Figure 4-1 Daisy-ChainedTDI-TDO Between JTAG and EJTAG TAP Controllers

Some EJTAG debug tool chains can handle this configuration. If another TAP controller in the path to the EJTAG
controller can be identified, then the debug software must be told the following items:

• the Instruction word length of the JTAG TAP controller

• the Instruction word command to select the bypass register (usually all 1’s)

• the length of the bypass register (usually one bit)

This will enable the debugger to always select the bypass register within the JTAG TAP controller during EJTAG a
and compensate for the bypass register length.
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The main problem is the presence of the serial EJTAG TAP controller in the JTAG TAP path; automatic JTAG
testbenches do not like the visibility of another TAP controller inside the chip. MIPS strongly recommends NOT
the setup in Figure 4-1 on page 49 for sharing TAP controller external pins between an EJTAG TAP and a JTAG

4.1.2.2 Multiplexed Pin Access

A select signal can choose which TAP controller has access to the physical pins. How the user wishes to gate 
inputs of the unselected TAP controller depends on the presence of an asynchronous reset input. In Figure 4-2
50, a setup which anticipates the existence ofTRST* on the “CHIP JTAG TAP” controller is shown.

Figure 4-2 Multiplexing Between JTAG and EJTAG TAP Controllers

TAPSelect in Figure 4-2 on page 50 is shown as an SOC_CHIP external input, and NOT as internal logic or reg
signal. This is for two important reasons:

1. When doing board level interconnect testing. The JTAG controller should be able to work the boundary sca
without any other controlled pins beyond the five JTAG pins.

2. When the board holding the SOC_CHIP is used for software development, EJTAG must be functional on th
controller while the M4K core (and thus probably the entire SOC_CHIP) is held in reset. During reset, EJTA
commands can initialize the M4K core to leave the reset state in Debug Mode, and thus the debug interfac
control the M4K core before it attempts to fetch the first instruction.

The two reasons above also imply thatTAPSelectmust be valid and fixed while using either of the two TAP controller
For system integrity,TAPSelectshould also be kept valid while there is no probe connected to the TAP Probe Conne
One small implication to this is, that theTAPSelectinput can not be tested by JTAG boundary scan. It might be wise
NOT have boundary scan include theTAPSelect input logic. This is, however, the only problem in this shared TAP
controller configuration. A two-way jumper on the PCB could be created to select the fixed state ofTAPSelect.

If pin sharing between EJTAG and JTAG TAP controllers is absolutely unavoidable, MIPS recommends the
implementation shown in Figure 4-2 on page 50.

4.2 How to ConnectEJ_* Pins

In the previous section, issues concerning the sharing of EJTAG TAP and JTAG TAP pins were discussed. This
assumes that the chip has a separate set of EJTAG TAP pins. Other non-TAP EJTAG pins on the M4K core will r
separate pins on the chip. This section will discuss how to connect all theEJ_* pins in the chip.
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4.2.1 EJTAG Chip-Level Pins

The EJTAG TAP signals on the M4K core are:EJ_TCK, EJ_TMS, EJ_TDI, EJ_TRST_N, EJ_TDOandEJ_TDOzstate.
An extra signalEJ_DINT (Debug Interrupt) can also be connected to an external pin. Figure 4-3 on page 51 sho
intended connection to the chip. Pin names for the chip have been chosen as the usual JTAG TAP signals, witE”
prefix.

Figure 4-3 EJTAG Chip-Level Pin Connection

AC timing characteristics for theETDO driver and the input buffers can be found in Section 7.2, “AC Timing
Characteristics”, of the EJTAG Specification. In particular notice that all the probe pins must have pull-up or pull-
logic attached. As shown in Figure 4-3 on page 51, all the chip-level pins have corresponding pins on the EJTAG
Connector.RST* is special, because an assertion (active low) on this pin must result in a system level reset. Re
Figure 4-4 on page 53 for further details on EJTAG-related reset circuitry.

4.2.1.1 OptionalETRST* Pin

Although theETRST*is an optional input pin on the chip, it is strongly recommended that theETRST*pin be present.
If this pin is not used, on-chip logic is needed that assertsEJ_TRST_Nat power-up. This assertion can ONLY happen o
power-up or at cold-start. Any soft reset of the chip and M4K core must not affect theEJ_TRST_Nsignal. Special timing
also applies to the deassertion ofEJ_TRST_N. Refer to Section 6.3 of the EJTAG Specification, “OptionalTRST*Pin”
for more details.

4.2.1.2 OptionalEDINT  Pin

TheEDINT input pin is also optional. An assertion ofEJ_DINTin the M4K core triggers a Debug Interrupt Exception
This will stop the normal program flow within the M4K core and force it to the Debug Exception Vector. The same e
can be achieved by setting the EjtagBrk bit in the EJTAG Control Register. The EJTAG Control Register is acce
through the TAP controller pins, which takes multipleETCK clock periods.

The difference is that asserting theEJ_DINT input has much lower latency, and gives faster control over forcing the
processor into Debug Mode. If fast entry into Debug Mode is not needed, thenEDINTpin can be removed from the chip

EJ_DINT on the M4K core may also be connected to on-chip logic, such as a Multi-Core Breakpoint Unit (see F
4-5 on page 54 for more details). TheEJ_DINTsup (EJTAG Debug Interrupt Pin Supported) input on a M4K core is
asserted only if theEJ_DINTinput connected to theDINT pin of the Probe Connector. TheEJ_DINTinput may not be
disabled if the theEJ_DINTsup input is deasserted.EJ_DINTsup is only used to set the DINTsup bit in the EJTAG
Implementation Register.
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If EJ_DINT on the M4K core to an interrupt source is not connected, then bothEJ_DINT andEJ_DINTsup must be
deasserted by connecting them to logic zero.

4.2.2 EJTAG Device ID Input Pins

The Device ID Register in the EJTAG TAP controller gets its values directly fromEJ_ManufID[10:0],
EJ_PartNumber[15:0] andEJ_Version[3:0]. If these pins are not already tied off to specific values by a hard core
provider, the integrator is free to choose what values to place onEJ_PartNumeber[15:0] andEJ_Version[3:0].

4.2.2.1 EJ_ManufID[10:0]

EJ_ManufID[10:0]must be a compressed form of a JEDEC standard manufacturer’s identification code. See “S
4.2.2, "EJTAG Device ID Input Pins" on page 52”.

4.2.2.2 EJ_PartNumber[15:0]

EJ_PartNumber[15:0]is recommended to be a manufacturer-specific number identifying this core as a MIPS M4K
A new physical cache configuration could facilitate a new value onEJ_PartNumber[15:0], but could also be an
increment of the number on theEJ_Version[3:0] input.

4.2.2.3 EJ_Version[3:0]

EJ_Version[3:0]is recommended to be unique for each new physical layout, with the sameEJ_PartNumber[15:0]input.

4.2.3 EJTAG Software Reset Pins

Two reset-related EJTAG outputs are controlled by corresponding bits in the EJTAG Control Register: Periphera
(EJ_PerRst) is controlled by the PerRst bit, and Processor Reset (EJ_PrRst) is controlled by the PrRst bit.

Another software reset-related pin is Soft Reset Enable (EJ_SRstE). This pin is driven from the SRE bit in the Debug
Control Register (the DCR is a memory-mapped register present within the M4K core, accessible in Debug Mo

4.2.3.1 EJ_PrRst Signal

Processor Reset can be interpreted as “System Soft Reset”. When the PrRst bit is asserted by EJTAG debug s
the result must be one of two possible scenarios:

1. The entire system is reset. This could be achieved by connectingEJ_PrRst to chip (internal or external) soft reset
logic.

2. Nothing happens. EitherEJ_PrRstis left unconnected or the assertion is gated off by other logic like theEJ_SRstE
pin.

A protocol exists using the Rocc (Reset Occurred) bit for debug software to identify which of the two scenarios o
Figure 4-4 on page 53 shows one possible implementation for the use ofEJ_PrRst.

4.2.3.2 EJ_PerRst Signal

Peripheral Reset can be used as a soft reset of the peripherals surrounding the M4K core. The effect of an ass
EJ_PerRstis implementation-dependent; however, it should never result in a reset of the M4K core itself. Figure 4
page 53 shows one possible implementation of the use ofEJ_PerRst.
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4.2.3.3 EJ_SRstE pin

As described earlier, this signal can be used to control one or more Soft Reset sources in the system reset log
Figure 4-4 on page 53 for a possible implementation.

4.2.3.4 A Reset Logic Implementation

Figure 4-4 on page 53 shows a possible implementation of theEJ_PrRst, EJ_PerRst andEJ_SRstE pins in a system.
Note that in this example all the Reset control logic is place outside the chip containing the M4K core. This req
extra output signals, but this need not be the case.

Figure 4-4 Reset Circuitry Implementation

Note:TheRST*input to the Reset Logic from the Probe Connector is a required connection when implementing E
into the system.

4.3 Multi-Core Implementations

In a chip configuration with multiple M4K cores, all EJTAG TAP controllers can share one set of EJTAG TAP contr
pins. The MIPS-recommended daisy-chain connection for a Multi-Core configuration is shown in Figure 4-5 on pa
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Figure 4-5 Multi-Core Implementation

4.3.1 TDI/TDO Daisy-Chain Connection

In a Multi-Core implementation, one of the processor cores is often be the Master. In Figure 4-5 on page 54, the
core is first in theTDI/TDOdaisy-chain to get a low latency access to control and data registers in the Master core.
a large number of EJTAG TAP controllers are connected in the daisy-chain, the placement of the Master core be
significance.

The chip’s ETDO output enable is controlled by EJ_TDOzstate in the last core in the chain because this core dri
TDO chip pin.

4.3.2 Multi-Core Breakpoint Unit

The Multi-Core Breakpoint Unit (MCBU) shown to the right in Figure 4-5 on page 54 is an implementation-depen
block. Each core can signal whether or not it is in Debug Mode based on itsEJ_DebugMoutput. When doing Multi-Core
debug, a low latency entry into Debug Mode may be desired for all or some of the other processor cores on the
based on the entry of one of the processors into Debug Mode. For example, a Slave core might rely on full opera
the Master core; then the Master core’s entry into Debug Mode can trigger a Debug Interrupt (EJ_DINT) to the Slave
core(s). This would place each Slave core in Debug Mode with low latency after the Master core entered Debu
(depending on implementation, the latency would be less than 10 cycles).
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⇓ One or more Processor cores with EJTAG ⇓
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Debugger software can detect that the Master core has entered Debug Mode, and trigger this for the Slave core
might be supported by your Debug software as an automatic feature. The detection and the following Slave core(s
trigger would have to go through the serial TAP controller chain, which could take hundreds of cycles before the
core(s) enter Debug Mode.

The physical implementation and/or programmability of the MCBU is a system decision beyond the scope of th
document; however, if an MCBU is designed, theEJ_DebugM signal is a level-sensitive signal andEJ_DINT is rising
edge-triggered. Creating aDINT_x signal from a simple OR-function of one or moreDebugM_x signals does not have
the desired effect. A rising edge detection on aDebugM_xoutput signal is needed to generate the desired rising edge
aDINT_x input signal. Once in Debug Mode, the M4K core ignores any subsequent Debug Interrupts onEJ_DINT.

4.4 EJTAG Trace

A M4K core can support EJTAG Trace features, which enables real-time tracing of the Program Counter and loa
address and data values. The trace logic is included as a build time option. Four basic options are possible:

1. No trace logic included.

2. Trace logic to on-chip trace memory (embedded within the core).

3. Trace logic to support an off-chip trace probe (with off-chip trace memory).

4. Combination of options 2 and 3.

If options 1 or 2 are present, then theTC_output pins on the core will be statically driven to zero, and all theTC_inputs
are ignored. With option 2, access to the trace features and on-chip trace memory occurs through the standard
probe.

If options 3 or 4 are present, then the TCtrace Interface on the M4K core is active and theTC_ inputs and outputs must
be connected to a core external Probe Interface Block (PIB), or tied off. If a PIB is not implemented then all theTC_
inputs should be tied low.

The specific implementation details for the PIB and how to connect it to the core can be found in theEJTAG Trace
Control Block Specification [3].
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Chapter 5

Coprocessor Interface

This chapter describes the MIPS Core Coprocessor Interface supported by the MIPS32™ M4K™ processor co
MIPS Core Coprocessor Interface is described in the companion document, titledCore Coprocessor Interface
Specification[4]. The Core Coprocessor Interface is an optional feature in a M4K core. If the M4K core does not co
the Core Coprocessor Interface logic, then this chapter is irrelevant. This chapter discusses the specific M4K
implementation of the Core Coprocessor Interface, in the following sections:

• Section 5.1, "Introduction"

• Section 5.2, "Coprocessor Instructions"

• Section 5.3, "Signal Configuration"

• Section 5.4, "Interface Protocols"

• Section 5.5, "Power Saving Issues"

• Section 5.6, "Template for Coprocessor Modules"

5.1 Introduction

The M4K core Coprocessor Interface allows a single Coprocessor 2 (COP2) to be connected to the integer un
function of Coprocessor 2 is user-definable and is intended to allow special-purpose engines, such as a graph
accelerator that is integrated into the architecture. The M4K core doesnot support an interface to a floating-point unit
which is dedicated to Coprocessor 1 in the MIPS32™ architecture. The special handling for floating-point instru
needed in the integer unit, as well as the extra signaling needed between the integer unit and a floating-point un
present in a M4K core.

The Coprocessor Interface has the following features:

• No late or critical signals are part of the interface. This allows for easier design and synthesis for coprocesso
designers.

• By keeping the interface as simple as possible, designers can concentrate on the coprocessor functionality rat
its interface.

• Minimal required interface logic, thereby minimizing area and power overhead.

• Performance is not compromised. This interface is compatible with all high-performance features of the M4K
processor core.

• Fully compliant to the MIPS Core Coprocessor Interface standard.

5.2 Coprocessor Instructions

A M4K core supports all MIPS32-compliant COP2 instructions, except the load double (LDC2) and store doub
(SDC2) instructions.Table 5-1 lists all the supported instructions and how they are decoded.
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Only instructions with the decode specified inTable 5-1may be sent to the coprocessor. If an instruction is not suppor
by the coprocessor, then a reserved instruction (RI) exception must be sent back to the M4K core (see Section
"Coprocessor Exceptions").

The M4K core only dispatches instructions to the coprocessor if the CU2 bit in the CP0Status register is set. Refer to
theMIPS32 M4K Processor Core Software User’s Manual for details on Coprocessor 2 instructions and CP0 regist

Table 5-1 Supported Coprocessor 2 instructions

Instruction Decode Description

LWC2 IR[31:26] = 1100102
Load Word from memory to a Coprocessor 2 register.

COP2 register number = IR[20:16], sub-select = 0a.

SWC2 IR[31:26] = 1110102
Store Word to memory from a Coprocessor 2 register.

COP2 register number = IR[20:16], sub-select = 0a.

MFC2 IR[31:26] = 0100102 &
IR[25:21] = 000002

Move word from Coprocessor 2 register to processor general-purpose
register.

COP2 register number = IR[15:11], sub-select = IR[2:0]b.

CFC2 IR[31:26] = 0100102 &
IR[25:21] = 000102

Move word from Coprocessor 2 control register to processor
general-purpose register.

COP2 control register number = IR[15:11]c.

MTC2 IR[31:26] = 0100102 &
IR[25:21] = 001002

Move word to Coprocessor 2 register from processor general-purpose
register.

COP2 register number = IR[15:11], sub-select = IR[2:0]b.

CTC2 IR[31:26] = 0100102 &
IR[25:21] = 001102

Move word to Coprocessor 2 control register from processor
general-purpose register.

COP2 control register number = IR[15:11]c.

BC2F
BC2FL

IR[31:26] = 0100102 &
IR[25:23] = 0102 &
IR[16] = 02

Branch on Coprocessor 2 condition false (likely)d.
The condition code check from the coprocessor should be set if the
condition is False.

Condition is specified by IR[22:18].

BC2T
BC2TL

IR[31:26] = 0100102 &
IR[25:23] = 0102 &
IR[16] = 12

Branch on Coprocessor 2 condition true (likely)d.
The condition code check from the coprocessor should be set if the
condition is True.

Condition is specified by IR[22:18].

COP2 IR[31:26] = 0100102 &
IR[25] = 12

Perform Coprocessor 2 operation.

Operation is specified by IR[24:0].

Note: [a] The LWC2 and SWC2 instructions has no room to specify a sub-select COP2 register value. sub-select 0 must be assumed.

Note: [b] The MFC2 and MTC2 instructions target a COP2 register (0-31) with a sub-select (0-7), effectively making the COP2 register
file of size: 32x8 = 256 registers.

Note: [c] The CFC2 and CTC2 instructions target COP2 control registers (0-31). There is no sub-select field, making the COP2 control
register file of size: 32 registers.

Note: [d] The BC2 instructions use IR[17] to select between branch and branch likely type instructions. The coprocessor would typi-
cally not care to look at IR[17] for BC2 instruction decodes.
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5.3 Signal Configuration

The M4K core Coprocessor 2 interface supports a subset of the possible features specified in theCore Coprocessor
Interface Specification. Following is a list of the supported features of the M4K core Coprocessor Interface:

• A single COP2 coprocessor is supported. No support for the floating-point COP1 coprocessor.

• Data transfers are 32 bits. No support for 64-bit buses and 64-bit instructions (LDC2/SDC2).

• One issue group is supported (group 0). No support for dual (or more) issue.

• Data from the coprocessor can only be one instruction out-of-order.

• Data to the coprocessor is always sent in order.

• An instruction is never nullified.

From a static pin configuration point of view, the supported features listed above have the following consequence
to Table 2-3 on page 3 for a listing of all the M4K core signals).

TheCP2_inst32_0 output is tied high (logic 1). The M4K core is a MIPS32 compliant core only, and does not su
any 64-bit features. All instructions assume the coprocessor behaves as a 32 bit device, mandated by always 
CP2_inst32_0. A possibleCP2_tx32_0output from a coprocessor1 to the core is not defined on the interface of the cor
and can be left unconnected on the coprocessor.

TheCP2_tdata_0[31:0]and theCP2_fdata_0[31:0]data buses are only 32 bits wide. 64-bit transfers are not suppor

TheCP2_tordlim_0[2:0]input is ignored and theCP2_torder_0[2:0]output is tied to 0002, since the M4K core never
sends data out of order. The coprocessor attached to a M4K core does not need to limit the use of out-of-order-ne
might not be true for other MIPS cores using the same interface. If a coprocessor is built which does not allow 
receives to be sent out-of-order, then it can drive theCP2_tordlim_0[2:0] signal to 0002.

TheCP2_fordlim_0[2:0] output is tied to 0012 and theCP2_forder_0[2:1] input is ignored. No more than one
out-of-order data return is supported. OnlyCP2_forder_0[0] is needed to define the out-of-order-ness of the data
received from the coprocessor. If data is sent to the M4K core more than one out-of-order, then it would be a p
violation and the result from this is undefined.

TheCP2_null_0 output is tied low (logic 0). With the M4K core, the only instruction that may be nullified is an
instruction in a branch likely delay slot (when the branch isn’t taken). The branch condition is evaluated so earl
dispatch of the delay slot instruction can be suppressed. TheCP2_nulls_0signal will still strobe once for each instruction
dispatched as required by the protocol. But no instruction is ever nullified.

Note: If theCP2_null_0 always being low when implementing the coprocessor is relied upon, then might not be
compatible with future versions of the M4K or other MIPS cores.

TheCP2_reset output is driven directly from a register. This register is driven by the internal reset, and clocked b
core clock (SI_ClkInafter clock tree). This means that the assertion/deassertion is one cycle later than what the cor
This is not a problem as the first instruction after reset can never be a Coprocessor 2 instruction.

TheCP2_present input determines the presence of a coprocessor. If this input is deasserted (logic 0), then the
Coprocessor Interface is disabled. All inputs should be driven static to their inactive values, and all outputs mu
ignored. It is not possible to set the CU2 bit in the CP0Status register ifCP2_present is deasserted (0).

1 Static signal from a coprocessor, used to indicate it can only handle 32-bit transactions.
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5.4 Interface Protocols

Refer to Table 2-3 on page 3 for a complete listing of all the pins of the M4K core.

The Coprocessor Interface is composed of several simple transfers:

• Instruction Dispatch - Starts coprocessor instructions.

• To COP Data - Transfers data to the coprocessor.

• From COP Data - Transfers data from the coprocessor.

• Coprocessor Condition Code Check- Transfers coprocessor condition check result to the M4K core.

• Coprocessor Exceptions - Notifies the M4K core whether any coprocessor exceptions happened for an instruc
or not.

• Instruction Nullification  - Notifies the coprocessor whether instructions are nullified or not.

• Instruction Killing  - Notifies the coprocessor whether instructions can commit state or not.

All transfers use the following protocol:

• All transfers are synchronously strobed, that is, a transfer is only valid for one cycle (when the strobe signal 
asserted). The strobe signal is a synchronous signal and should not be used to clock registers.

• No handshake confirmation of transfer.

• Except for instruction dispatch, no flow control.

• Except for To/From COP data transfers, out of order transfers are not allowed. All transfers of a given type, e
To/From COP data transfers, must be in dispatch order.

• Ordering of different types of transfers for the same instruction is not restricted.

After an instruction is dispatched, additional information about that instruction must be later transferred betwee
coprocessor and the M4K processor core. The additional information and the transfers required are summarizedTable
5-2.

Note:For each dispatch type given in the table, all listed transfers arerequiredto be completed. No transfers are optiona
however, after an instruction is killed or nullified, any additional transfers that have not already happened will not
Once an instruction is killed or nullified, no further transfers for that instruction can happen. Additionally, if an
instruction is killed, then all transfers for all previously dispatched instructions will not happen either, including
instructions dispatched in the same cycle that the kill of an older instruction is sent.

Table 5-2 Transfers Required for Each Dispatch

Dispatch Type Required Transfers

To COP Op

(LWC2/ MTC2/
CTC2)

• Instruction nullification or nota

• To Coprocessor data transfer

• Coprocessor exceptions or not

• Instruction killing or not

From COP Op

(SWC2/ MFC2/
CFC2)

• Instruction nullification or nota

• From Coprocessor data transfer

• Coprocessor exceptions or not

• Instruction killing or not
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Each transfer can occur as early as the cycle after dispatch, and there is no maximum limit on how late the trans
occur. Only the dispatch interfaces have flow control, so that once dispatched, all transfers can occur immedia

All transfers are strobed. The data is not buffered and is transferred in the cycle that the strobe signal is asserted
strobe signal is asserted for 2 cycles, then two transfers occur. For instruction dispatches (Arithmetic, To COP, an
COP instructions) the strobe signal (CP2_as_0, CP2_ts_0 or CP2_fs_0) is asserted in the cycle after the instruction i
dispatched. This is done in order to insulate the strobe signals from poor timing. The dispatch cycle is the cycle
the instruction busCP2_ir_0[31:0] is valid.

Figure 5-1 General Transfer Example

Figure 5-1 on page 60 above shows examples of the transfer of nullification information. All non-dispatch trans
follow the same protocol.

On edge 4,CP2_nulls_0 is asserted, signifying the null transfer for instruction A. SinceCP2_null_0 is deasserted
on edge 4, instruction A is not nullified. Instruction B is dispatched on edge 4 and it receives the null transfer in th
cycle at edge 5. Since it is the cycle after dispatch, this is the earliest possible time any transfer for instruction 
happen.Instruction C is dispatched at edge 5. The nullification transfer is delayed for some reason until edge 10
general example the instruction C is nullified. This will never happen on the M4K core, also the nullify strobe is al
send in the cycle after dispatch on the M4K core.

For all transfers except To COP Data and From COP Data, the ordering of the transfers is simple: all transfers
specific type (for example, nullification transfers) in a specific issue group must be in the same order as the order in
the instructions were dispatched. Other kinds of transfers can be interspersed—for example, if four arithmetic
instructions were dispatched, there could be two nullification transfers, followed by four exception transfers, fol
by two nullification transfers.

Arithmetic Op

(COP2b)

• Instruction nullification or nota

• Coprocessor exceptions or not

• Instruction killing or not

Arithmetic Op, Branch

(BC2b)

• Instruction nullificationa

• Condition code check results

• Coprocessor exceptions or not

• Instruction killing or not

Note: [a] The M4K core will always signal not-nullified on all instructions.

Note: [b] For a description of this instruction, refer to the MIPS ISA definition.

Table 5-2 Transfers Required for Each Dispatch (Continued)

Dispatch Type Required Transfers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A CB

CP2_null_0

CP2_nulls_0

CP2_ir_0[31:0]

CP2_as_0

SI_ClkIn

CP2_irenable_0
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Note: If an instruction is killed or nullified, no remaining transfers for that instruction occur. In the cycle that the
instruction is being killed or nullified, transfers may occur, but will be ignored. Additionally, if an instruction is kille
all instructions dispatched after the killed instruction are also killed.

The Coprocessor Interface is designed to operate with coprocessors of any pipeline structure and latency; if th
core requires a specific transfer by a certain cycle, then it will stall until the transfer has completed.

For transfers from the coprocessor to the integer unit, the allowable latencies are shown inTable 5-3. The “Stage
Needed” column shows the integer unit pipeline stage where the data is used; if data is not available by the en
stage, then the integer pipeline will stall. The “Min” column shows the minimum time after dispatch that the intege
can accept the data (always one cycle). The “Max” column shows the maximum time after dispatch that the integ
could receive the data (always an infinite number of cycles). The “Max Without Stalling” column shows the longes
after dispatch that the integer unit could receive the data without stalling.

Because of its pipeline structure, the M4K core does not generate all allowable latencies for transfers from the
unit to the coprocessor.Table 5-4summarizes these latencies. The “Stage Sent” column shows the integer unit pip
stage in which the transfer is performed. The “Min” column shows the shortest amount of time after dispatch th
integer unit will send the data. The “Max” column shows the longest time after dispatch that the data could be 

The “Max” latency is given in dispatches and thus defines the number of pending transfers to be made. It is the n
of pending transfers that defines the interface logic required in the coprocessor.

Table 5-3 Allowable Interface Latencies from a Coprocessor to the M4K Core

From To
Stage

Needed
Min

(cycles)
Max

(cycles)

M4K Max
Without

Stalling (cycles)

Instruction Dispatch Coprocessor
Exceptions M 1 ∞ 1

From COP Instruction
Dispatch

From Coprocessor Data
Transfer M 1 ∞ 1

Branch Instruction
Dispatch

Coprocessor
Condition Code Check Ea 1 ∞ -1b

Note: [a] The M4K cores does not have any branch prediction logic. Because of this, the new address (Branch taken or not) must be
available in the E stage in order to have the address ready for the instruction following the branch delay slot.

Note: [b] The minus one (-1) indicates that the Coprocessor 2 Branch instruction will always cause a minimum of two stall cycles, while
waiting for the Condition Code Check to be returned.

Table 5-4 Interface Latencies from the M4K Core to a Coprocessor

From To
Stage
Sent

Min
(cycles) Max

Instruction Dispatch Instruction
Nullification E+1 1a N/A

To COP instruction
Dispatch

To Coprocessor
Data Transfer A 2 1 dispatch later (2 outstanding transfers)

Instruction Dispatch Instruction
Killing A+1~ 3 2 dispatches later (3 outstanding transfers)

Note: [a] The null strobe (CP2_nulls_0) is an OR function of the dispatch strobes (CP2_as_0, CP2_ts_0 and CP2_fs_0).
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5.4.1 Instruction Dispatch

This transfer is used to signal the coprocessor to start coprocessor instructions. Data transfer instructions includ
that move data to the coprocessor from the integer processor core (To COP Ops), and those that move data fr
coprocessor to the integer processor core (From COP Ops).

Because data transfers for the To COP and From COP instructions occur later than the dispatch of the instruct
coprocessor itself must keep track of data hazards and stall its pipeline accordingly. The integer processor core d
track coprocessor data hazards.

In a M4K core, instructions are dispatched to the coprocessor in the last cycle of the E-stage of the integer pip
Although the interface allows the coprocessor and integer pipelines to operate independently, it is important th
dispatch occurs to both in the same cycle to ensure that all subsequent transfers are properly synchronized. T
core may not dispatch a coprocessor instruction when the integer pipeline is stalled. This is necessary to allow
CP0 exception handling.

CP2_as_0, CP2_ts_0 andCP2_fs_0 are asserted in the cycle after the instruction is driven. These signals are dela
strobe signals, and although this delay complicates the functional interface, it enables the processor to achieve ve
timing on these signals. Without this delay, these signals would have been timing-critical.

Because the above instruction strobes are delayed, the coprocessor would normally be required to register
CP2_ir_0[31:0] in every cycle and conditionally use it in the following cycle depending on the instruction strobes.
protocol has the side effect of registering non-coprocessor instructions and partially processing them, thus pot
increasing power consumption. TheCP2_irenable_0 signal compensates for this effect by enabling the coprocesso
avoid registering instructions that will never be dispatched to it.CP2_irenable_0 low guarantee that this cycle is not a
dispatch cycle.CP2_irenable_0 high (1) indicates that this cycle might be a dispatch cycle.CP2_irenable_0 is a late
signal, making its timing critical. It should only be used to drive the enable input of the instructions latches.

Because of the tight relation between dispatch and required return from the coprocessor on the M4K core, it is
recommended to do some amount of instruction decode in the dispatch cycle, and latch this decode based on
CP2_irenable_0. This makes it more likely that data/exception returns from the coprocessor can be sent in the cycl
dispatch, and provide stall free operation in the M4K core.

Only one instruction strobe can be asserted at one time:CP2_as_0, CP2_ts_0, andCP2_fs_0.

CP2_inst32_0 andCP2_endian_0 are both part of an instruction dispatch. They instruct the coprocessor to:

• work in MIPS32-compatibility mode (CP2_inst32_0 high)

• Handle internal byte/halfword coprocessor instructions as big-endian operations (CP2_endian_0 high)

Because the M4K core is a MIPS32-compatible core and does not support any MIPS64 specific features, the s
CP2_inst32_0 is tied high (1).

TheCP2_endian_0 signals are asserted during dispatch to notify the coprocessor of the proper byte-ordering m
use.
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Figure 5-2 Instruction Dispatch Waveforms

Figure 5-2 shows example waveforms of four instruction dispatches.

• On edge 2, instruction A is dispatched.CP2_ir_0[31:0], CP2_inst32_0 andCP2_endian_0 are all valid and
CP2_irenable_0 is driven high to indicate that this might be a dispatch cycle. On edge 3, instruction A is strob
an arithmetic instruction byCP2_as_0.

• On edge 5, instruction B is valid onCP2_ir_0[31:0]. Instruction B is also an arithmetic instruction. because the
CP2_abusy_0 signal is detected high on edge 5, preventing arithmetic instruction strobes, the instruction is no
strobed on edge 6. On edge 8,CP2_abusy_0 is detected low, and the instruction is then strobed on edge 9 using
CP2_as_0.

• On edge 6 CP2_fbusy_0 was asserted. Because no From COP Op instruction was attempted dispatched in 
this assertion is ignored.

• On edge 9, instruction C is dispatched. This is a From COP Op, requesting data from the coprocessor to be se
M4K core.CP2_fbusy_0 is not driven high on edge 9, and thus instruction C is strobed on edge 10.

• On edge 12, instruction D is valid, andCP2_irenable_0 is driven high. Instruction D is a To COP Op instruction.
CP2_tbusy_0 is not asserted on edge 12, but for some internal reason in the M4K core. Instruction D is not st
until edge 14. On edge 14CP2_tbusy_0 is driven high from the coprocessor, but this is too late to prevent the
instruction strobe onCP2_ts_0.

The CP2_abusy_0, CP2_tbusy_0 and CP2_fbusy_0 signals are the only means for the coprocessor to prevent
core to dispatch instructions. When dispatched, all subsequent transactions for each instruction can happen imm
and the coprocessor must have buffers available to receive any information that might be transmitted from the 
the coprocessor. The reason to have 3 different instruction strobes is to enable a coprocessor to prevent one t
instruction

5.4.2 To Coprocessor Data Transfer

The Coprocessor Interface transfers data to the coprocessor after a To COP Op has been dispatched. Only To C
utilize this transfer. The coprocessor must have a buffer available for this data after the To COP Op has been disp
If no buffers are available, then the coprocessor must prevent dispatch by assertingCP2_tbusy_0.

The Coprocessor Interface allows out-of-order data transfers. Data can be sent to the coprocessor in a differen
from the order in which the instructions were dispatched. When data is sent to the coprocessor, theCP2_torder_0[2:0]
signal is also sent. This signal tells the coprocessor if the data word is for the oldest outstanding To COP data tra
the second oldest. The coprocessor can prevent the M4K from reordering To COP Data by drivingCP2_tordlim_0[2:0]
to 0002.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A

CP2_tbusy_0

CP2_abusy_0

CP2_ir_0[31:0]

CP2_as_0

SI_ClkIn

CP2_irenable_0

CP2_ts_0

CP2_fs_0

B C D
CP2_inst32_0

CP2_endian_0

CP2_fbusy_0
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Note: The M4K never sends data out of order. ThusCP2_torder_0[2:0] is tied to 0002 andCP2_tordlim_0[2:0] is
ignored.

Only word transfers are supported and the data is sent onCP2_tdata_0[31:0].

The integer unit can transfer data to the coprocessor in the cycle after it is received from the memory subsystem
event of a cache miss, this can potentially happen many cycles after dispatch.

Figure 5-3 To Coprocessor Data Waveforms

Figure 5-3 shows waveforms for 3 To COP Op instructions and the data transfer associated with this instruction
edges 2, 4 and 5 the To COP Op instructions A, B and C respectively are dispatched to the coprocessor. Beca
are To COP Ops, theCP2_ts_0 strobe is used to strobe the instruction dispatch.

On edge 5, the data associated with instruction A is valid. This is indicated by theCP2_tds_0driven high (1). Because
CP2_torder_0[2:0] is 0002 ties the data to the oldest outstanding To COP Op, which is instruction A.

On edge 6, data for instruction B is valid. This is the earliest after dispatch, that data will be sent from the M4K
The interface must however support data to be sent as early as the cycle after dispatch (edge 5 for instruction 
compliant with other MIPS cores using the Core Coprocessor Interface.

Data for instruction C is not sent until edge 12. This could be due to a data-cache miss, but could have many othe
core internal reasons. The Coprocessor must support any cycle delay from instruction dispatch to data transm
COP Ops.

5.4.3 From Coprocessor Data Transfer

The Coprocessor Interface transfers data from the coprocessor to the integer processor core after a From COP
been dispatched. Only From COP Ops utilize this transfer. Note that the M4K core has buffers for this data that e
the transfer to occur as early as the cycle after dispatch.

The Coprocessor Interface allows out-of-order transfer of data. That is, data can be sent from the coprocessor
different order from the order in which the instructions were dispatched. When data is sent from the coprocess
CP2_forder_0[2:0]signal is also sent. This signal tells the integer processor core if the data is for the oldest outsta
From COP data transfer or the second oldest. The M4K core supports a maximum of 1 out-of-order transfer and
CP2_fordlim_0[2:0] = 1 0012.

Note: It is illegal for a coprocessor to driveCP2_forder_0[2:0] > 1 0012.

Only word transfers are supported, and the data must be sent onCP2_fdata_0[31:0].

For both memory stores (SWC2) and move instructions (MFC2/CFC2), the integer pipeline can stall if data is n
available by the M stage. This is because the data to be stored/moved to a register is needed early in the follow
A-stage. By receiving the data in the M-stage, the Coprocessor Interface can have non-critical timing.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CiBi

CP2_torder_0[2:0]

CP2_tdata_0[31:0]

CP2_ir_0[31:0]
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Figure 5-4 From Coprocessor Data Waveforms

Figure 5-1 shows example waveforms for 4 From COP Op instructions, and the data transfer associated with th
instructions. On edge 2, 4, 5 and 9 the From COP Ops A, B, C and D respectively are dispatched from the intege
They are all From COP Ops, thusCP2_fs_0 is used to strobe the instruction.

On edges 5 and 6, data for instruction A and B are returned from the coprocessor. The data is returned in orde
instruction dispatch, andCP2_forder_0[2:0] is consequently driven to 0002. Data for instruction B is sent in the cycle
after dispatch. This is needed to ensure stall free operation in the M4K core. The data for instruction A is one c
delayed, causing one stall cycle in the M4K core.

On edge 11, data for instruction D is returned to the integer core. This is the second oldest outstanding data tr
CP2_forder_0[2:0] is driven to 1 0012 to indicate one out of order in the data transfer.

On edge 12, the data for instruction C is finally returned.CP2_forder_0[2:0]is driven to 0 0002 because this is the oldest
outstanding data transfer.

5.4.4 Condition Code Checking

The Coprocessor Interface provides signals for transferring the result of a condition code check from the coproce
the integer processor core. Only BC2 instructions utilize this transfer. These instructions are dispatched to both
integer processor core and the coprocessor.

For each instruction dispatched, a result is sent back to the integer processor core that says whether or not to 
branch.

For this reason, the coprocessor must interpret the type of instruction to decide whether or not to execute it.
Customer-defined BC2 instructions are thus possible. Four main flavors of BC2 instructions exists (BC2T, BC2
BC2F and BC2FL). The integer core does not care if it is a True or False branch. It will only distinguish between a b
and a branch likely type instruction. The coprocessor is the unit that determines if the branch should be taken or
taken branch is indicated by asserting the condition code checkCP2_ccc_0 = 1. The not taken branch is indicated by
CP2_ccc_0 = 0.

With the M4K core, the address of the second instruction following a branch is calculated in the branch instruc
E-stage, which is the dispatch stage. The condition contributes to the address calculation. The BC2 instruction
dispatched to the coprocessor, but stalled in the IU’s E-stage until the coprocessor returns the condition result.

The condition code check from the coprocessor is registered on the input to the M4K core. The values are not av
until the cycle after return from the coprocessor.

Note: The M4K core always stalls for a minimum of 2 cycles in E-stage for any BC2 instruction sent to the coproc
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Figure 5-5 Condition Code Check Waveforms

Figure 5-5 shows an example waveform for two BC2 instructions. BC2 instructions belong to the arithmetic COP
group of instructions and the dispatch is thus strobed using the CP2_as_0 strobe.

On edges 2 and 6, BC2 instructions are dispatched from the integer unit. The condition code check for instructio
returned as fast as possible, which is on edge 3. This means that the stall penalty was kept at the minimum of 2
CP2_ccc_0 is set (12) indicating to the integer core to go ahead and take the branch.

On edge 11, condition code for instruction B is returned. The four cycle extra delay means that the M4K core wil
for a minimum of 6 cycles for this BC2 instruction.CP2_ccc_0is driven low indicating to the integer core that the branc
is not to be taken.

5.4.5 Coprocessor Exceptions

All instructions dispatched utilize this transfer. It is used to signal if an instruction caused an exception in the
coprocessor. This transfer must happen even if the instruction did not cause an exception in the coprocessor.

When a coprocessor instruction causes an exception, the coprocessor must signal this to the integer processor
can start execution from the exception vector. The coprocessor can signal a Reserved Instruction exception (RI)
instruction dispatched.

Signalling for Reserved Instruction exceptions is divided between the integer processor core and the coproces
follows:

• The integer processor core signals Reserved Instruction exceptions for non-arithmetic coprocessor instructio
are not valid To COP Ops or From COP Ops:

– (IR[31:26] = 0100102) & (IR[25:24] = 002) & (IR[22:21] = 112): Reserved To/From COP Ops.

– (IR[31:26] = 0100102) & (IR[25:24] = 002) & (IR[22:21] = 012): unimplemented DMFC2/DMTC2 COP Ops.

– (IR[31:30] = 112) & (IR[28:26] = 1102): unimplemented LDC2/SDC2.

• The coprocessor hardware must signal Reserved Instruction exceptions for all unimplemented arithmetic copr
instructions:

– (IR[31:26] = 0100102) & (IR[25] = 12) & (IR[24:0] = unimplemented COP2 instruction)

– (IR[31:26] = 0100102) & (IR[25:24] = 012) & (IR[23:21] = unimplemented Branch instruction).

Note: The M4K core does not dispatch the instructions that it is responsible for RI exception signaling. This migh
be the case for other integer cores featuring this interface. In this case, the instruction can always later be nulli
killed. A fully compliant coprocessor must be able to handle this and is allowed to signal no-exception on these
instructions.

The coprocessor should only signal Coprocessor 2 exceptions (C2E) for any implemented COP2 instruction wh
an execution problem. All unimplemented legal COP2 instructions should signal an RI exception.
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Note: For imprecise exceptions, the exception sent is not related to the current instruction, the C2E exception ca
be sent on dispatched COP Ops that are NOT part of the instructions that the integer core are guaranteed to sign
defined above.

The coprocessor may also signal one of two implementation-specific exception codes (IS1 and IS2). These ex
codes can be used to trigger special software exception handling routines. A special handler can be started quick
exception handler does not need to read a specific coprocessorCause register, as might be needed on the general C2
exception. The rules for C2E exception also apply to IS1 and IS2 exceptions.

Note: A coprocessor can signal an exception for all To/From COP Ops. An exception on a To/From COP Op ca
depend on the associated data, except for the data sent from the integer core on a CTC2 instruction1.

The integer processor core detects Coprocessor Unusable exceptions for all coprocessor instructions.

The M4K core needs the exception transfer for all instructions in the M-stage to avoid stalling. It must signal exce
in the first cycle of the A-stage, and will stall in the M-stage if it has to wait for the transfer.

If imprecise coprocessor exceptions are allowed, then the coprocessor can use the “No exception” signal imme
after dispatch. This will prevent stalling in the integer pipeline while waiting for precise results; if an exception d
occur for that instruction, then a subsequent coprocessor instruction can be flagged as exceptional (although imp
or else an interrupt could be signalled through the normal integer processor core interrupt inputs (SI_Int[5:0]).

Figure 5-6 Exception Waveforms

Figure 5-6shows example waveforms for an exception return from three coprocessor instructions. In this examp
exception returns are all arithmetic COP Ops, andCP2_as_0 is used to strobe the dispatch.

On edges 2, 6 and 7, instructions A, B and C respectively are dispatched. A is an unimplemented arithmetic instr
causing a Reserved Instruction exception (RI). B is an implemented arithmetic instruction, as is C, but some er
occurred while executing the instruction, causing a C2E exception.

On edge 3, an RI exception for instruction A is returned to the integer core.CP2_excs_0 set (12) signals that the
CP2_exc_0is valid.CP2_exc_0driven high (12) signals that a valid exception is on CP2_exccode[4:0]. Refer to Ta
2-3 on page 3 for descriptions of the valid exception bit values.

On edge 9, no exception is returned for instruction B. On edge 11, the C2E exception for instruction C is returned
integer core.

1 Exception based on the data sent on a CTC2 is possible if the control value written indicates that the instruction should always cause
exception.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A

CP2_exc_0

CP2_excs_0

CP2_ir_0[31:0]

CP2_as_0

SI_ClkIn

CP2_exccode_0[4:

B C

RI C2E
68 MIPS32™ M4K™ Processor Core Integrator’s Guide, Revision 01.03

Copyright © 2002 MIPS Technologies Inc. All rights reserved.



5.4 Interface Protocols

core,
eration

se, all
n may

alled

in with

rs for
 integer

his
 results

s logic

ay need
later is
e other
dated.

ed due

re also
or
ter that

that
sfers
r,

alled to

itical
nding
5.4.6 Instruction Nullification

All instructions dispatched utilize this transfer. Used to signal if an instruction was nullified in the integer processor
this transfer happens even if an instruction was not nullified so that the coprocessor knows when it can begin op
of subsequent operations that depend on the result of the current instruction.

Normally, an instruction is killed only when the pipeline is being flushed because an exception occurred. In this ca
subsequent instructions in the pipeline (both coprocessor and integer core pipelines) are also killed. An instructio
also be killed because it is in the delay slot of a branch-likely instruction that did not branch. This type of killing is c
instruction nullification. In this case, subsequent instructions in the pipeline are unaffected by the nullification.

Nullification must be performed in an early stage of the pipeline to ensure that subsequent instructions can beg
the correct operands.

In the cycle that an instruction is nullified, other transfers for that instruction may still occur, but no further transfe
that instruction can occur in subsequent cycles. Exceptions caused by a nullified instruction are masked by the
processor core.

Note: The M4K core never nullifies an instruction. No nullify is always transferred in the cycle after dispatch.

Nullification transfers follow the generic example given in Figure 5-1 on page 60.

5.4.7 Instruction Killing

All instructions dispatched utilize this transfer. This is used to signal if an instruction can commit state or not. T
transfer happens even if an instruction is not being killed so that the coprocessor knows when it can writeback
for the instruction.

Due to various exceptional conditions, any instruction may need to be killed. The integer processor core contain
which tells the coprocessor when to kill coprocessor instructions.

When a coprocessor instruction is being killed because of a coprocessor-signalled exception, the coprocessor m
to perform special operations. For example, if an arithmetic COP2 instruction signalled a C2E exception, then 
killed due to this exception. Some internal status bits might need to be updated before clearing the pipe. On th
hand, if that same instruction was killed because of a higher priority exception, those status bits must not be up
For this reason, as part of the kill transfer, the integer processor core tells the coprocessor if the instruction is kill
to a coprocessor-signalled exception or not.

When a coprocessor instruction is killed, all subsequent coprocessor instructions that have been dispatched a
killed. This is necessary because the killed instruction(s) may affect the operation of subsequent instructions (f
example, because of bypassing). In the cycle in which an instruction is killed, other transfers may occur, but af
cycle, no further transfers occur for any of the killed instructions. A side-effect of this is that the other instructions
are killed do not have a kill transfer of their own. In effect, they are immediately killed and thus their remaining tran
cannot be sent, including their own kill transfer. Previously nullified instructions do not have a kill transfer eithe
because once nullified, no further transfers can occur.

Note: If the integer processor core dispatches a coprocessor instruction in the same cycle that a kill is being sign
the coprocessor, then that instruction is also considered killed.

The integer unit knows in an instruction’s A stage whether the instruction is to be killed or not. In order to avoid cr
timing signals being passed directly to the coprocessor, the integer unit will register its A stage kill signal before se
it to the coprocessor.
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Figure 5-7 Instruction Killing Waveforms

Figure 5-7 shows example waveforms for instruction killing.

On edges 2, 6 and 7, instructions A, B and C are dispatched.

On edge 5, instruction A is notified of a no-kill. This instruction can now commit internal state and register writes i
coprocessor.

On edge 12, instruction B is killed. The value of (102) onCP2_kill_0[1:0], indicates that the instruction was not killed
due to an exception sent by itself. Instruction B therefore does not commit any state or register bits in the copr
If CP2_kill_0[1:0] was (112), then the B instruction could commit state bits, indicating the cause of the exception it
(not shown).

Instruction C never gets aCP2_kills_0strobe, because the killing of instruction B also killed instruction C. An indirect
killed instruction like instruction C can never commit any state or register bits in the coprocessor.

5.5 Power Saving Issues

The power saving issues have already been touched on in the previous sections. This section specifies what to
what not to do in order to minimize power dissipation in the M4K core and the coprocessor.

5.5.1 No coprocessor Present

If a hard-core version of a M4K core is being used that includes the Coprocessor Interface, but there is no plan to c
a coprocessor to the core, then the following must be observed:

• Tie CP2_present low (0). Tying this input low, will prevent any use of the Coprocessor Interface.

• Tie all strobe inputs (CP2_fds_0, CP2_cccs_0 andCP2_excs_0) low (0). If the M4K core is implemented using
gated clocks on local registers, then the strobe inputs on each bus are used as the enable signal in the clock
logic for the input capture registers.

• Tie all other inputs to a static value. All other inputs are ignored, whenCP2_present is low (0).

The above rules are very simple to implement. Tie allCP2_xxandCP2_xxinputs to the M4K core low (0) if there is no
coprocessor attached to the integer core.

5.5.2 How to UseCP2_idle

CP2_idle is an input to the M4K core. When a coprocessor is attached to the core, it is important to use this inp
properly in order for theWAIT  instruction to work effectively.

TheWAIT instruction enables power saving features within the M4K core. WhenWAIT is executed, the M4K core will
stall the front of the pipe, and wait for all older instruction and pending bus activity to complete. Once this is dete

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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all but about one hundred flops have their clock gated off via one top-level clock gating circuit. The only way to reaw
the core is to signal an interrupt onSI_Int[5:0], SI_NMI or EJ_DINT, or by resetting the core usingSI_Reset or
SI_ColdReset.

While the WAIT instruction ensures that no new instructions go down the pipe in the integer core, nothing is impl
done to tell the coprocessor to prepare for a possible stopping of its clock. This is where theCP2_idlesignal is used. The
coprocessor must assert this signal high whenever no instruction execution occurs within the coprocessor.CP2_idle is
part of the logic that determines when the top level clock gating element can turn off the clock. If this signal is deas
then the clock will never be gated off in the M4K core, and the whole purpose of theWAIT  instruction is lost. The
CP2_idle input is ignored whenCP2_present is low.

It is important to note that theCP2_idle inputcannot be used to reawaken the M4K core. After theWAIT  instruction
has actively stopped the main clock to most of the M4K core flops, a deassertion ofCP2_idlewill restarts this clock but
leaves the processor issuing NOPs down the pipe. The coprocessor cannot awaken the core by deassertingCP2_idle.If
some external source requires service from either the integer core or the coprocessor (via the integer core), th
external source must assert an interrupt directly to the M4K core.

5.5.3 Gating the Clock to the Coprocessor

For power reasons, the designer of the coprocessor is encouraged to use a top-level clock gater on the clock t
distributed within the coprocessor. The M4K core has an output,SI_Sleep, which indicates when the internal clock in
the integer core is stopped.Figure 5-8shows an example of how to implement and control a top-level clock gater in
coprocessor.

Figure 5-8 Use of SI_Sleep for Clock-Gating in the Coprocessor

5.5.4 Using strobe signals as gating inputs on the sub-interfaces

Each of the sub-interfaces of the Coprocessor Interface has a strobe signal associated with it.

Figure 5-9 on page 71 shows how this strobe signal can be used as the enable input to a clock gater driving the
the corresponding data portion of the interface. The “To Data” interface is shown as an example. Instruction nullifi
and instruction killing can use the same scheme, but the low number of bits in the data portion of these two sub-int
might not make it worth the effort.

The instruction dispatch interface is different as its strobe signals arrive one cycle after the instruction word.
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Figure 5-9 Clock-Gating of To Data Registers in Coprocessor

Figure 5-10 shows the intended use ofCP2_irenable_0. CP2_irenable_0 is usedonly as a gated-clock enabling signa
when the clock-gating on the capture of the instruction word is introduced. For all other purposes, theCP2_as_0,
CP2_ts_0 andCP2_fs_0 are the true qualifiers for a valid instruction.

Figure 5-10 Clock Gating of Instruction Registers in Coprocessor

The Pre-decoding block inFigure 5-10 represents combination logic before the receiving flops for the instruction
register. This block is most likely needed before the Instruction register if stall-free operation on coprocessor instru
in the M4K core is to be maintained. Refer to Table 5-4 on page 61, for information on allowable latencies to ma
stall-free operation.

5.6 Template for Coprocessor Modules

A template for coprocessor 2 modules is included in the processor release. This template provides a simple
implementation of Cop2 interface logic. It can be used as is for many coprocessor designs or can be used as a r
for designing coprocessor interface logic. There is an application note,Core Coprocessor 2 Module Template
Application Note (MD00130) in the$MIPS_PROJECT/doc  directory as well as RTL in the
$MIPS_PROJECT/ref_design/cop2tpl  directory.
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Chapter 6

VMC Simulation Model

This chapter discusses the simulation models included in a MIPS32™ M4K™ core release. It contains the follo
section:

• Section 6.1, "Cycle-Exact Simulation Model"

6.1 Cycle-Exact Simulation Model

A VMC model is available if cycle-exact simulation is required. VMC is a tool from Synopsys that compiles RTL
a protected binary executable. This resulting executable can then be linked into a SWIFT R41 compatible RTL sim
to simulate a MIPS32 M4K processor core.

6.1.1 Installing the VMC Model

1. The M4K VMC model is supported under the Sun Solaris UNIX and x86 RedHat Linux platforms.

2. The M4K VMC model is a SWIFT R41 compatible model. This model can be loaded into a site-wide R41
LMC_HOME tree or into its own stand-alone LMC_HOME tree. As appropriate, set the LMC_HOME
environment variable to the location where the installation is to reside:

% setenv LMC_HOME <your_install_path>

In a normal MIPS32 M4K soft core installation, for example, a local LMC_HOME location might be set like th
% cd $MIPS_PROJECT
% mkdir vmc_install
% setenv LMC_HOME $MIPS_PROJECT/vmc_install

3. Invoke the admin install tool supplied in the top level of the release package for the VMC model:
% $MIPS_PROJECT/vmc[_sun,_linux]/mm4k_vmc_release/sl_admin.csh

1. A dialog box labeled “Install From...” should pop up.

2. Make sure the text input box points to the package, “mm4k_vmc_release”.

3. Press “Open” to continue.

4. Another dialog box is used to select the models that will be installed. Only one choice is available in thi
release, a model called “mm4k_vmc_model” followed by a version number. Click on that model to bring it
the “Models to Install” window.

5. Click “Continue” to close this dialog box.

6. Another dialog box to select the platforms for this model installation will appear. Each release package
only contain the model for one platform and that check box should be selected. The appropriate simula
packages used under the “EDAV Packages” heading also need to be specified. Both Verilog-XL and
NC-Verilog are covered by the “Cadence Design Systems” push button. Modelsim and VCS have their 
buttons. Multiple EDAV packages can be selected and the packages for all simulators that will be used 
be selected. Push the “Install” button to continue.

7. An “Install complete” message in the main message window is received and then exit from the sl_admi

4. During the installation, a documentation directory will be created at$LMC_HOME/doc. There are pdf files in this
directory structure that contain additional details about the install process, administering and using SmartM
and licensing.
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5. The M4K VMC model requires a GLOBEtrotter FLEXlm license in order to run. This license can be received
button from MIPS through your IP vendor. For details on how to install the license, see the “Network Licens
chapter of$LMC_HOME/doc/smartmodel/manuals/install.pdf.

6. For Linux installations only: A directory needs to be added to the LD_LIBRARY_PATH to make the VMC mo
work.

• $LMC_HOME/lib/x86_linux.lib/
% setenv LD_LIBRARY_PATH $LMC_HOME/lib/x86_linux.lib:$LD_LIBRARY_PATH

6.1.2 Verifying the VMC Installation

A utility called swiftcheck is available in the VMC installation to ensure that the model and environment variab
are set up properly. This command must be run before attempting to simulate with the M4K VMC model. Invocat
as follows:

% $LMC_HOME/bin/swiftcheck mm4k_vmc_model

The fileswiftcheck.out is produced by the command. Check it to verify that there are no errors as reported a
end of the file.

6.1.3 SWIFT Template Generation

In order to instantiate the M4K VMC model in the RTL simulation environment, a SWIFT template of the M4K VM
model needs to be created, which is then instantiated in the RTL design. This template file provides a conversi
the VMC model to the simulator’s SWIFT interface. The SWIFT template is simulator-specific, so simulator
documentation provides additional details on creating a SWIFT template, including the template in the design.

To create a SWIFT template under Synopsys VCS, the following command can be used:
% vcs -lmc-swift-template mm4k_vmc_model

To generate a SWIFT template for Verilog-XL, NC-Verilog, and ModelSim, a script calledvsg  that is included in the
$LMC_HOME/bin area of the installed VMC area is used (This script is included as part of the Cadence EDAV pac
as described in step 3.6 above). The invocation is:

% $LMC_HOME/bin/vsg -z mm4k_vmc_model

Two example templates are included in the$MIPS_PROJECT/vmc_sun/verification  directory.

6.1.4 Back-Annotating with SDF Timing

This is not supported.

6.1.5 Register Windows

To increase the visibility into the VMC model, a number of core signals are made available via register window
added information can make it easier to determine what the core is doing and help debug any integration/softw
problems.Table 6-1 shows the signals available via register windows.

Table 6-1 Core Signals Visible in VMC model

Name Bits Description

CPZ_x [31:0] Contents of Coprocessor 0 register xxx. The following registers are available: Context, Count, Comp
BadVA, Status, Cause, EPC, DEPC, ErrorEPC, DeSave, Debug, Config0, and Config1. .
MIPS32™ M4K™ Processor Core Integrator’s Guide, Revision 01.03 73

Copyright © 2002 MIPS Technologies Inc. All rights reserved.



Chapter 6 VMC Simulation Model

ys VCS,
bench:

The
,

he code

le
thin
rformed
called

r, the
6.1.5.1 Enabling VMC Window Signals in Synopsys VCS

Enabling the register window signals so they are visible is dependent on the simulator being used. For Synops
the register windows are globally enabled with the following code, which must be included somewhere in the test

initial $swift_window_monitor_on(“<instance_path_to_mm4k_vmc_model>”);

6.1.5.2 Enabling VMC Window Signals in Other Verilog Simulators

For Verilog-XL, NC-Verilog, and ModelSim, every window signal to be viewed needs to be individually specified.
code required is most easily placed in the SWIFT template produced by thevsg command, as described in Section 6.1.3
"SWIFT Template Generation". The format of the enabling code is:

$lm_monitor_vec_map(<verilog_register>, “<instance_path_to_mm4k_vmc_model>”,
“<window_signal_name>”);

In the SWIFT template created byvsg , the <verilog_register> statements exist in the template but are dangling.
Dangling registers can be used in the command required to enable each window signal. Here is an example of t
required to view some specific window signals:

initial
begin
$lm_monitor_vec_map(RF1, “<instance_path_to_mm4k_vmc_model>”, “RF1”);
$lm_monitor_vec_map(RF2, “<instance_path_to_mm4k_vmc_model>”, “RF2”);
...
end

6.1.6 VMC Simulation Configuration

The VMC model is configurable so that all functionally visible features of the M4K core are visible. The availab
options are shown inTable 6-2 and include processor type (M4K core), selection of various functional features wi
the core, and debug switches that determine whether optional trace files are produced. The configuration is pe
by setting up a memory file which is read in and used to select between the different modules. The memory file is
memory.m4k_config  and needs to be in a SWIFT readmem format which is:

#Comment
<Address>/<Data>;

The available configuration options are shown inTable 6-2.

RFx_xx [31:0] Contents of the General Purpose Register File. Shadow register sets are denoted by the first numbe
register number by the second.

Table 6-2 VMC Configuration Options

Name
Addr
(hex) Description Legal Values Default

LITEMDU 7 Choose multiply/divide unit (MDU) type.

0 - Fast, high-performance
MDU

1 - Small, iterative MDU

0

EJSModule 8 Which EJTAG simple break module should be used.

0 - No SB

1 - 2I/1D SB

2 - 4I/2D SB

2

Table 6-1 Core Signals Visible in VMC model (Continued)

Name Bits Description
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EJTModule 9 Use EJTAG TAP module.
0 - No TAP

1 - Use TAP
1

Inst A
Unique instance identifier. Tags output messages and
trace files to more easily support multiple instances.
Must be specified as a hex value.

0 - 3f (hex; corresponds to 0-63
decimal) 0

dispEn B Display Enable. Controls printing of warning or error
messages coming from the VMC model.

0 - No messages

1 - Messages
1

bus_trace D
Enables logging of all transactions on the cores EC
interface (external bus) to file
vmc.bus[.Inst].trace .

0 - No log

1 - Log bus transactions
1

dumpTrace E Enables instruction trace to file
vmc[.Inst].trace .

0 - No tracing

1 - Trace file will be created
0

MIPS16e F Indicates that MIPS16e decoder is present
0 - No MIPS16e support

1 - MIPS16e support is present
0

CP2Module 11 Include Coprocessor 2 interface module.
0 - No CP2 Interface

1 - CP2 Interface included
1

PDTModule 12 Include EJTAG PDtrace and Trace Control Block
modules

0 - No trace blocks

1 - PDtrace and TCB blocks
included

0

UDI 13

Indicates that user-defined instruction (UDI) features
are present. This field only affects the setting of a bit
in the CP0 register (Config.UDI). The VMC model
does not emulate the actual function of UDIs.

0 - No UDI present

1 - UDI is present
0

Gated clocks for
ucreg 14

Indicates whether gated clocks are used internally for
certain unconditional registers whose state is a logical
don’t care in certain situations. This field does not
affect the instruction-level or cycle-by-cycle
functionality of the core, but can affect the state as
seen at the pins.

0 - No gated clocks for ucregs

1 - Gated clocks present for
ucregs

1

PDtrace dump enable 17

This bit enables the creation of files tracing activity on
the internal PDtrace and TCB interfaces, to files
vmc[.Inst].pdtrace  and
vmc[.Inst].tcbtrace .

0 - No tracing

1 - tracing enabled
0

TCB On-chip 18 Select whether the TCB (Trace Capture Buffer) has an
on-chip memory interface or not

0 - No on-chip memory

1 - On-chip memory present
1

TCB On-chip Size 19 Size of the on-chip TCB memory in 64-bit trace
words. Must be specified as a hex value.

5-14 (hex; 5-20 decimal):
On-chip memory is 2^^N trace
words

14

TCB Off-chip 1A Select whether the TCB has an off-chip memory
interface or not

0 - No off-chip memory I/F

1 - Off-chip memory I/F present
1

TCB Triggers 1B Number of TCB trigger registers implemented 0-8: N trigger registers 8

Table 6-2 VMC Configuration Options (Continued)

Name
Addr
(hex) Description Legal Values Default
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and a
An examplememory.m4k_config  file is shown below:

# Memory Image File containing simulation configuration information
# Variable Number/Variable Value

#LITEMDU
7/0;
#EJSModule
8/2;
#EJTModule
9/1;
#Inst
A/0;
#dispEn
B/1;
#haltIt
C/1;
#bus_trace
D/1;
#dumpTrace
E/1;
#Cop2 Interface Module
11/1;

6.1.7 Trace Files

The VMC model is capable of producing two types of trace files: a log of all transactions on the SRAM interface
trace of all instructions executed.

6.1.7.1 SRAM Interface Trace

The SRAM trace file (vmc.bus[.Inst].trace ) contains information about all transactions on the SRAM
interface. The fields in this file are:

• Type: Transaction type: RI- Instruction read, RD- Data read, W- Data write.

PIB Data Width 1C

Number of bits for the TRDATA port to the Probe
Interface Block (PIB). Must be specified as a hex
value.

Only valid for Lead Vehicle VMC models

4,8,10 (hex; corresponds to
4,8,16 decimal) 8

Global Clock-gate 1F

Selects whether the global clock gating for the WAIT
instruction is enabled. This switch will change the
exact cycle behavior just before, during and after a
WAIT instruction.

0 - No Global clock-gating

1 - Global clock-gaiting enabled
1

SRAM Interface 21 Selects between dual and unified SRAM interfaces.
0 - Unified I/F

1 - Dual I/F
0

GPR Shadow Sets 23 Selects the total number of General Purpose Register
shadow sets

1 - One GPR is present

2 - Two GPR sets are present

4 - Four GPR sets are present

1

Table 6-2 VMC Configuration Options (Continued)

Name
Addr
(hex) Description Legal Values Default
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• BE<3:0>: Byte Enables - indicates which byte lanes are active for this transaction.

• Addr<31:0>: Address value.

• RData/WData<31:0>: Read or Write data. The value in parentheses is the valid mask. A zero in any bit posit
indicates that there was an x in the corresponding bit of the data.

• RBE<3:0>: Read Byte Enables - indicates which byte lanes of the incoming data were valid.

• Side: Indicates whether request was on the I-side or D-side SRAM interface.

• Stall: Indicates when partial data is returned (RBE asserted with Stall)

• Abort: Indicates when an abort was requested and if it was acknowledged: xA - abort was requested but not
acknowledged, A - abort was requested and acknowledged, 0 - no abort requested

• L/U - Indicates that a lock or unlock request was made and whether it was successful, L- lock requested, U -
requested and successful, xU - unlock requested but not successful, 0 - no lock/unlock requested

• Ejt - Indicates that there was an EJTAG break that cancelled this request.

• Error - Indicates whether there was an error signalled on this request.

• Cycle: Indicates a cycle number when this transaction completed. (Cycles are counted from the falling edge 
first Cold Reset).

6.1.7.2 Instruction Trace

The instruction trace file (vmc[.Inst].trace ) tracks the instruction flow in the processor. The architectural-visib
effects of each instruction (register updates, memory writes, etc.) are also logged. The trace comes out in a ra
and is most easily read after a post-processing step. Thebin/rtlSort  script does this post-processing. It sorts the
trace file to group all lines associated with a given instruction, adds instruction disassembly (usingbin/MIPSdis ) and
slightly reformats the trace.

[Ins:4 0 Cyc:6 ]bfc00000 1fc00000 2:  00000000    NOP
|<-----a------>|<--------b-------->|<-------c------->|

a) Each line is tagged with an instruction number, sequence number, and a cycle number. Gaps in the instruction
sequence can occur near exceptions. The sequence number indicates a sub-instruction in a macro sequence
(SAVE/RESTORE instructions). This will be 0 for instructions that are not part of a macro sequence. The cycle nu
reflects the cycle at which the information was dumped. Most of the information is dumped from a canonical po
the pipeline, so most of the lines for a given instruction will have the same cycle number. The exception is the upd
the HI/LO registers in the MDU. Because the MDU pipeline can run independently from the main pipeline, these re
updates can be reported in a different cycle.

b) For instructions that do not take a fetch exception, the first line of the instruction will be a fetch line. This field s
the hex values of the Virtual Address, Physical Address, and Cache Coherency Attribute (CCA) for the instruction
On the M4K core, the CCA values are not used and are not traced. The CCA will always be reported as 2 (uncac

c) This field is the instruction opcode and disassembly.

[Ins:954 0 Cyc:8166 ]Write GPR[26][1]= 80024230(ffffffff)
|<--------a-------->|<------d------->|<-------e------->|

d) This indicates that the instruction caused a register update. Possible registers are GPR[1-31] for the general
registers, HI and LO for the MDU registers, and C0* for Coprocessor Zero registers. The second bracketed ter
indicates the shadow set for GPR writes. It is omitted if the write is to shadow set 0.

e) This is the data value in hex. The value in parentheses is the valid mask. A 0 indicates that the correspondin
the data was an x. A dash in the data value is used for sub-word loads and stores to indicate invalid bytes on the m
read/write line.
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[Ins:972 0 Cyc:8359 ]Mem Read [80024168 00024168 3] = 00000000(ffffffff)
|<---------a------->|<---f--->|<--------g-------->|<---------e-------->|

f) This is for memory accesses.

• Mem Read indicates a load that  went to memory.

• Probe Read indicates a load that went to DRSEG in EJTAG space

• Mem Write indicates a store that went to memory

• Probe Write indicates a store that went to DRSEG in EJTAG space

g) This is the virtual address, physical address, and cache coherency attribute for the data access.

[Ins:127 0 Cyc:1838 ]# Branch Taken
[Ins:2 0 Cyc:0 ]# PDT Mode Change 0: AllowOverflow TraceNormalBranch
|<-----a------>|<-------------------------h------------------------>|

h) Lines beginning with a # are comments. These do not track architectural state. These comments provide ad
information about program flow and processor state that is used in our internal verification environment. For ex
the two lines above show a comment tracking a branch condition and one indicating the PDtrace mode.

6.1.8 Simple Testbench

To simplify bring-up of the VMC model, a simple testbench is included in the directory
$MIPS_PROJECT/vmc_sun/verification . This testbench can be used to verify that the VMC model is install
correctly and shows examples of how to use it. The testbench ties off many of the M4K inputs not directly related
memory access portion of the EC interface. It has a Verilog memory that is loaded from thetest.hex  file. The
includedtest.hex has a simple boot sequence that executes a few instructions, then does a store to a trick box
system model. When that store is seen, the system model does a $finish to stop the simulation.

In order to use the VMC model, a Verilog template is needed. This template is specific to the simulator (includi
particular version in some cases). See Section 6.1.3, "SWIFT Template Generation" for details on how to crea
template. There are two sample templates in theverification directory:mm4k_vmc_model.vcs.v is a template
for vcs, andmm4k_vmc_model.vxl.v  is a template for Verilog-XL, ModelSim, and NC-Verilog.

The Makefile in$MIPS_PROJECT/vmc_sun/verification provides targets for building the VMC model in
this testbench. Support for several simulators is included.

6.1.9 Multiple VMC Instances

It is possible to instantiate multiple M4K VMC models to simulate a multi-CPU system. The SWIFT template fil
parameterized to control which configuration file is read. By reading a unique configuration file, each instance 
configured differently. By specifying unique instance tags in the memory file, the log output and trace files from
different models can be distinguished. The following example shows how this multiple instantiation can be
accomplished. The following Verilog code will instantiate two VMC models, with instance names “vmc1” and “vm
which will read thememory1.m4k_config andmemory2.m4k_config configuration files. Note that the unique
configuration files with the desired options for each instance must be manually created, as described in Sectio
"VMC Simulation Configuration" on page 74.

mm4k_vmc_model vmc1 (....);
defparam vmc1.InstanceName = “vmc1”;
defparam vmc1.MemoryFile = “memory1”

mm4k_vmc_model vmc2 (...);
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defparam vmc2.InstanceName = “vmc2”;
defparam vmc2.MemoryFile = “memory2”;

6.1.10 Assertion Checks

A variety of assertion checks are embedded within the M4K VMC model. These checkers look for error condition
unknown states on critical signals. These checks are divided into a few basic categories:

• Fatal HW Errors - These errors should never occur and indicate a problem with the CPU. MIPS support
(support@mips.com) should be contacted with the details of the problem.

• Fatal SW Errors - These errors indicate that the chip cannot proceed due to unknown states on internal signals
errors can be caused by faulty software or incorrect chip hook up.

• XWarning - This indicates an unknown state inside the chip from which it is theoretically possible to recover.
Typically, these warnings will give a more descriptive message and better point to start debugging from than 
eventual Fatal SW Error.

• I/O Warning - This indicates that the chip is possibly not hooked up correctly. For example, this will be flagged
reset inputs are asserted for more than 2000 cycles. This is symptomatic of someone assuming that the rese
are active low rather than active high, but might be the desired behavior in the system testbench or simulatio
environment. These events are classified as warnings and not fatal errors.

• Fatal I/O Errors - These errors indicate illegal conditions on the primary I/O. Examples of this include undrive
inputs or an insufficient reset pulse width.

• Fatal Config Errors - These errors indicate that the processor configuration is not valid.

Recall that configuration options are available to enable or disable the display of these assertion messages, and t
whether or not a fatal error will stop simulation; see Section 6.1.6, "VMC Simulation Configuration" on page 74 for
details.
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Chapter 7

Clocking, Reset and Power

This chapter describes the clocking and initialization interface on a MIPS32™ M4K™ processor core, when the c
integrated into a system environment. The power-reduction features available on a M4K core are also discusse

This chapter contains the following sections:

• Section 7.1, "Clocking"

• Section 7.2, "Reset and Hardware Initialization"

• Section 7.3, "Power Management"

7.1 Clocking

There are potentially two input clocks that must be generated and driven to a M4K core. The main clock input is n
SI_ClkIn,and exists on every M4K core. An optional clock input is calledEJ_TCK, and is only present if an EJTAG
TAP controller is implemented within the core. Both clocks are used internally at 1x their respective input freque
no frequency multiplication or division is performed internally. No phase-locked loop is present within the M4K 
Typically no minimum frequency is required, so the frequency of the input clocks can be quickly changed or stop
desired, as long as edge rate integrity is maintained.

The following discussion describes general clocking characteristics of a typical M4K core implemented with a sta
ASIC physical design methodology. It is possible that a specific hard core implementation may differ from the ge
clock guidelines discussed here; e.g., dynamic circuit implementation techniques may mandate that a minimum
frequency be met for a particular hard core. So the general clocking assumptions described here must be valid
the specific M4K core that is being integrated before proceeding with system clock design.

7.1.1 SI_ClkIn Clock

SI_ClkIn is the primary 1x input clock to the M4K core and is used to enable the vast majority of sequential logi
well as time the synchronous SRAMs normally used to implement the caches, within the M4K core.

Only the positive edge of theSI_ClkInclock is used internally to the core, so there is no specific duty cycle requirem
Transparent-low latches usually do exist within the core, so the duty cycle should still be within 40-60% of the p
Since no dynamic logic or PLL is present, the minimum frequency is 0 MHz; i.e.,SI_ClkIn can be stopped if desired.
The maximumSI_ClkIn frequency depends on the specific M4K core implementation.

7.1.2 EJ_TCK Clock

EJ_TCKis an optional 1x clock input to the M4K core, only existing if the core implements an EJTAG TAP contro
EJ_TCK is the test input clock used to synchronize the serial shifting of data into and out of the TAP controller. 
EJ_TCK clock is completely asynchronous to theSI_ClkIn clock, in terms of both frequency and phase.

The minimum frequency ofEJ_TCKis 0 MHz, and can be stopped when the TAP controller is not used. The maxim
frequency is specified as 40 MHz (25 ns period), due to limitations of the probes that usually interface to the EJTAG
port. Both the rising and falling edges ofEJ_TCKare used to control flops. The minimum clock high and low times a
specified as 10 ns, yielding a duty cycle requirement of 40 to 60% at 40 MHz.
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7.1.3 Handling Clock Insertion Delay

When a M4K core is implemented, clock trees are usually created to buffer and distribute theSI_ClkIn andEJ_TCK
clocks throughout the core. These clock trees impart a finite delay from the primary clock inputs to the eventua
of the buffered clocks at the sequential elements within the core. The exact amount of clock insertion delay is a
characteristic of each specific M4K core implementation.

The clock insertion delay presents an issue that must be managed when the M4K core is instantiated in the re
system. Any clock insertion delay from the clock input to the actual clock usage at the sequential elements for 
primary inputs and outputs of the core reduces the primary input setup times, but increases the input hold times
as the clock-> out delays on the primary outputs. Since most M4K core inputs are received directly by flops, an
core outputs come directly from flops, the setup and hold times for the primary inputs and outputs can be balance
system level.

Several different techniques can be used to manage the M4K core’s internal clock insertion delay:

• Tolerate the core clock insertion delay at the system level, if possible, within the system logic that interfaces 
M4K core. This may entail adding delay elements when driving inputs, so hold times are not violated, and rec
“late” outputs, reducing the number of logic stages that can exist in the same cycle the outputs are driven sin
clock insertion delay is visible. This may not be acceptable for all system designs, but is usually the simplest
approach.

• When creating the system clock tree for the sequential logic that interfaces to the M4K core, match this system
to the core’s internal insertion delay. Clock tree generation tools have the ability to match relative clock delay
knowing the core’s internal clock insertion delay will allow the internal clocks to be specified as matching poi
(within reasonable skew limits). With this approach, input hold times and output delays can be minimized wh
allows more time in the cycle for useful work.

• Use theSI_ClkOut reference clock.SI_ClkOut is an output of the M4K core that is tapped from the internal clock
tree so that it is identical (within reasonable skew limits) to the clock seen by the sequential elements within the
core. The difference betweenSI_ClkInandSI_ClkOutrepresents the clock insertion delay of the primary clock use
within the M4K core. (Note that there is no corresponding reference clock output for theEJ_TCK clock, so this
technique cannot be applied to that clock domain.) Due to loading limitations, theSI_ClkOutclock probably can’t be
used directly to control system logic that interfaces to the core, but it can be used, for example, as the referenc
to a de-skewing phase-locked loop in the system to “hide” the core’s clock insertion delay.

7.2 Reset and Hardware Initialization

Hardware initialization is accomplished through theSI_ColdReset, SI_Reset andSI_NMI input pins, and via the
EJ_TRST_Npin if the optional EJTAG tap controller is present within the M4K core. This section describes how th
pins are typically used in systems. These reset input pins must always be driven either to a logic “1” or “0” to the
core, and not left floating or indeterminate. Each of the reset-relatedSI_* inputs triggers a different type of exception
within the M4K core; the MIPS32 M4K™ Processor Core Software User’s Manual [1] describes more details about
these exceptions.

The initialization process for a M4K core requires a combination of hardware and software. This section descri
basic hardware initialization interface. In accordance with the MIPS32 Architecture, only a minimal amount of st
reset by hardware; so much internal state, like the Translation Look-Aside Buffer (TLB) and the cache tag arrays
be initialized via software before it can be used. See Reference [1] for a description of the software initializatio
requirements of a M4K core.
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7.2.1 SI_ColdReset

The high-activeSI_ColdReset input is a hard reset signal that initializes the internal hardware state of the M4K co
without saving any state information. This input is active-high and must be asserted for a minimum of 5SI_ClkIncycles.
The falling edge triggers a reset exception that is taken by the core as the highest priority. Typically,SI_ColdReset is
driven by a power-on-reset circuit in the system. For reliable operation, the power supply must be stable and theSI_ClkIn
clock must be running beforeSI_ColdReset is deasserted.

7.2.2 SI_Reset

The high-activeSI_Resetinput is a warm reset input to the M4K core. The input is active-high and must be asserte
a minimum of 5SI_ClkIn cycles. The falling edge triggers a soft reset exception which is taken by the core. Typi
SI_Resetis driven by the OR ofSI_ColdResetand the reset “button” in the system. Historically, MIPS processors ha
required Reset to be asserted during a ColdReset. The M4K core does not require this, so an assertion ofSI_ColdReset
does not need to force the assertion ofSI_Reset.For reliable operation, the power supply must be stable and theSI_ClkIn
clock must be running beforeSI_Reset is deasserted.

Within the core,SI_ColdResetandSI_Resetare handled almost identically. The only difference is thatSI_Resetsets the
StatusSR field to identify a soft reset exception.

7.2.3 SI_NMI

TheSI_NMIinput signals a non-maskable interrupt (NMI). This signal is active high and rising edge sensitive, but
be asserted for a minimum of one clock cycle in order to be recognized. The sampling of the rising edge triggers a
exception to be taken by the core. Typically,SI_NMIis used to indicate time-critical information, like impending loss o
power in the system.

7.2.4 EJ_TRST_N

An additional reset signal is required when the EJTAG TAP controller is present.EJ_TRST_Nis an active low reset signal
that resets the TAP controller. This is an asynchronous reset and neitherEJ_TCKor SI_ClkInneed to be toggling for it
to take effect.EJ_TRST_N must be asserted during power-on reset in order for the TAP controller and processor
properly initialized. In general, the low-asserted pulse width should be the equivalent of at least oneEJ_TCKcycle wide.

7.3 Power Management

Two primary mechanisms exist for managing system power with a M4K core: the hardware method of slowing dow
stopping) the primarySI_ClkInclock and the software method of initiating “sleep” mode via the execution of the WA
instruction.

7.3.1 ReducingSI_ClkIn Frequency

The most global method of power control is to hold the primarySI_ClkIninput static, or at a lower frequency, when the
M4K core is not in use, if desired by your system logic. The M4K core is internally fully static so the clock can be
either high or low, and the input frequency can be changed from maximum to a lower frequency, including zero
vice-versa) in a single cycle since there is no internal PLL.

The core outputs some pins which can be used, if desired, by the system logic to control entry or exit to this low-
state. TheSI_RP output is directly driven from the internal CP0 Status register, as an external indication that it is
desirable to place the M4K core in a low-power state by reducing the clock frequency. When the RP bit in the S
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register is set by software, system logic can detect the assertion of theSI_RPoutput and choose to place the M4K core
in a lower power state by reducing the clock frequency. Additionally, theSI_ERLandSI_EXLoutputs, derived from the
ERL and EXL bits in the Status register, indicate that an error or exception has been taken, and can be sensed
the clock frequency up again if desired.EJ_DebugM indicates that a debug exception has been taken. This can als
used to speed the clock back up. These output pins need not be used to control the core’s clock frequency, if othe
logic is available to indicate that the M4K core is not being used.

7.3.2 Software-Induced Sleep Mode

Upon execution of the software WAIT instruction, the M4K core will enter a low-power state once all outstandin
activity has completed. Most of the clocks in the M4K core will be stopped, but a handful of flops will remain activ
sense an external hardware event that will awaken the core again. The external events that can wake the core ba
any enabled interrupt, NMI, debug interrupt (viaEJ_DINT), or reset. Power is reduced since the global gated clock go
to the vast majority of flops within the M4K core is held idle during this sleep mode. TheSI_Sleeppin will be asserted
when the core enters this low power mode. This can be used by the system logic to achieve further power savings
will be no bus activity while the core is in sleep mode, so the system bus logic which interfaces to the M4K core
be placed into a low power state as well.
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Chapter 8

Design For Test Features

This chapter describes the Design For Test (DFT) features of the MIPS32™ M4K™ processor core. The MIPS-su
DFT features are optional, so their existence on a particular core is dependent on choices made during impleme

This chapter contains the following major sections:

• Section 8.1, "Introduction"

• Section 8.2, "Scan Test"

• Section 8.3, "User-Specific RAM BIST"

8.1 Introduction

An implementation of a M4K core may contain DFT features useful for supporting manufacturing test of the core w
an SOC environment. Typically, the DFT features will include one or more of the following:

• Scan test

• Memory BIST using a user-specified method

• Other implementation-dependent features

Table 8-1 summarizes the key pin usage related to test modes present on the core. This table should be consid
typical usage only, and other documentation related to the implementation details of a specific core must be con
The column labeled “Integrated BIST” can be ignored, since it is not relevant for the M4K core.

The remaining sections in this chapter discuss the major test modes in more detail.

Table 8-1 Core Input Values for Major Operating Modes

Input Pin

Mode

Normal (non-test) Scan Integrated BIST
User-specified

BIST

SI_ClkIn toggles toggles toggles toggles

EJ_TCK toggles when TAP active toggles - -

SI_ColdReset asserted for initialization - 1 impl-dependent

gscanmode 0 1 0 0

gscanenable 0
1: chain operation

0: capture cycles
0 0

BistIn[n:0] 0 0 0 impl-dependent
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8.2 Scan Test

The scan methodology normally used on a M4K core is muxed scan. The exact scan functionality is dependen
choices made when the core was created. Specific details about scan operation are therefore implementation-d
and beyond the scope of this document, but a few general comments are worth noting.

Three specific scan control pins besides the actual scan chain inputs and outputs are normally present. The sca
pins are: gscanmodeandgscanenable. If the scan insertion scripts for Mentor DFTAdvisor, provided with a soft M4
core, have been used for the scan insertion, then the scan-chains inputs and outputs are normally calledgscanin_x and
gscanout_x, where x is an integer greater than or equal to 0 identifying the input and output of each separate scan

With muxed scan, the two primary inputs clocks,SI_ClkIn andEJ_TCK, must be running when the scan chains are
loaded and unloaded. During a capture cycle(s), one or both of the primary clocks may be active.

The typical use of the scan control pins is illustrated inFigure 8-1. Note that this figure denotes typical scan operatio
only, and may not be relevant for a specific core.gscanmodemust be asserted during any scan operations.gscanenable
is asserted when the scan chains are loaded and unloaded, but not during the capture cycles.

Figure 8-1 Timing Diagram of Typical Scan Chain and Capture Operation

8.3 User-Specific RAM BIST

User-specific RAM BIST utilizes the top-levelBistInandBistOutbuses to test the on-chip trace SRAM array. The usa
and meaning of these pins are implementation-dependent.

Depending on a specific implementation, some of the scan related pins andSI_ColdReset might have to be asserted to
specific values during User-specified RAM BIST mode. It is normally required that theBistInbus be tied to all zero’s to
enable normal functional mode and disable any User-specific RAM BIST.

If User-specific RAM BIST is not implemented, then simply tie theBistInbus to all zero’s and ignore theBistOutoutput
bus.

SI_ClkIn

EJ_TCK

gscanmode

gscanenable

gscanin_x

gscanout_x

Max Chain Depth
cycles capture

Max Chain Depth
cycles capture
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Appendix A

References

This appendix lists other documents available from MIPS Technologies, Inc. that are referenced elsewhere in this
document. These documents may be included in the$MIPS_PROJECT/doc  area of a typical M4K soft or hard core
release, or be available on the MIPS web site, underhttp://www.mips.com/publications/index.html.

1. MIPS32™ M4K™ Processor Core Software User’s Manual
MIPS document: MD00249

2. EJTAG™ Specification
MIPS document: MD00047

3. EJTAG Trace Control Block Specification
MIPS document: MD00148

4. Core Coprocessor Interface Specification
MIPS document: MD00068

5. MIPS32™ Architecture For Programmers Volume III: The MIPS32™ Privileged Resource Architecture
MIPS document: MD00090

6. MIPS64™ 5Kc™ Processor Core Software User’s Manual
MIPS document: MD00012

7. Core Coprocessor 2 Module Template Application Note
MIPS document: MD00130
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Appendix B

Revision History

Table B-1 Revision History

Revision Date Description

00.90 June 27, 2002 • Preliminary release.

01.00 August 28, 2002

• Commercial release.

• Added entry for selection of number of GPR shadow sets in VMC
model,Table 6-2.

• Modified abort description on SRAM interface, as abort requests are not
only caused by interrupts.

• Updated description of write buffer control signals on SRAM interface.

01.01 August 29, 2002
• Updated Simulation Models chapter with more recent VMC information.

• Added more details to the write buffer description

01.02 August 30, 2002 • Corrected title of document. It was inadvertently called “Data Sheet”, not
“Integrator’s Guide”, in the last two releases.

01.03 January 9, 2003

• Renamed SI_IAck pin

• Added note about availability of cop2 template

• Corrected use of “maximum” and “minimum” in description of
TC_CRMax and TC_CRMin signals in Table 2-3 on page 4.

• Updated Simulation Models chapter with more recent VMC information
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